【題目】已知函數(shù)f(x)=1+x﹣ +…+ ,g(x)=1﹣x+ ﹣…﹣ ,設(shè)函數(shù)F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),則b﹣a的最小值為(
A.9
B.10
C.11
D.12

【答案】D
【解析】解∵f(0)=1>0,f(﹣1)=1﹣1﹣ ﹣…﹣ <0,
∴函數(shù)f(x)在區(qū)間(﹣1,0)內(nèi)有零點;
當(dāng)x∈(﹣1,0)時,f′(x)= >0,
∴函數(shù)f(x)在區(qū)間(﹣1,0)上單調(diào)遞增,
故函數(shù)f(x)有唯一零點x∈(﹣1,0);
∵g(1)=1﹣1+ +…﹣ >0,
g(2)=1﹣2+ +…+ <0.
當(dāng)x∈(1,2)時,f′(x)=﹣1+x﹣x2+x3﹣…+x2016﹣x2017= >0,
∴函數(shù)g(x)在區(qū)間(1,2)上單調(diào)遞增,故函數(shù)g(x)有唯一零點x∈(1,2);
∵F(x)=f(x+4)g(x﹣5),且函數(shù)F(x)的零點均在區(qū)間[a,b](a<b,a,b∈Z)內(nèi),
∴f(x+4)的零點在(﹣5,﹣4)內(nèi),g(x﹣5)的零點在(6,7)內(nèi),
因此F(x)=f(x+4)g(x﹣5)的零點均在區(qū)間[﹣5,7]內(nèi),
∴b﹣a的最小值為7﹣(﹣5)=12.
故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線的焦點為.

(1)求拋物線的標(biāo)準(zhǔn)方程;

(2)過的兩條直線分別與拋物線交于點,,(點,軸的上方).

①若,求直線的斜率;

②設(shè)直線的斜率為,直線的斜率為,若,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點B(0,1).

(Ⅰ)求橢圓的方程;

(Ⅱ)若點A是橢圓的右頂點,點在以AB為直徑的圓上,延長PB交橢圓E于點Q,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】類比三角形中的性質(zhì):(1)兩邊之和大于第三邊;(2)中位線長等于底邊的一半;(3)三內(nèi)角平分線交于一點; 可得四面體的對應(yīng)性質(zhì):(1)任意三個面的面積之和大于第四個面的面積;(2)過四面體的交于同一頂點的三條棱的中點的平面面積等于第四個面面積的;(3)四面體的六個二面角的平分面交于一點。其中類比推理結(jié)論正確的有 ( )

A. (1) B. (1)(2) C. (1)(2)(3) D. 都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程 =1表示的曲線為C,給出以下四個判斷:
①當(dāng)1<t<4時,曲線C表示橢圓;
②當(dāng)t>4或t<1時曲線C表示雙曲線;
③若曲線C表示焦點在x軸上的橢圓,則1<t<
④若曲線C表示焦點在x軸上的雙曲線,則t>4,
其中判斷正確的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知拋物線C的方程Cy2="2" p xp0)過點A1,-2.

I)求拋物線C的方程,并求其準(zhǔn)線方程;

II)是否存在平行于OAO為坐標(biāo)原點)的直線l,使得直線l與拋物線C有公共點,且直線OAl的距離等于?若存在,求出直線l的方程;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點B與點A(﹣1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于﹣
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為80,則判斷框內(nèi)應(yīng)填入(
A.n≤8?
B.n>8?
C.n≤7?
D.n>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出當(dāng)h(x)取得最小值時x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案