已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn為其前n項(xiàng)和,且滿足,n∈N*.?dāng)?shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項(xiàng)和.

(1)求a1、d和Tn

(2)若對(duì)任意的n∈N*,不等式恒成立,求實(shí)數(shù)λ的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  解:(1)(法一)在中,令,

  得 即  2分

  解得,  3分

  

  ,

    5分

  (法二)是等差數(shù)列,

    2分

  由,得,

  又,,則  3分

  (求法同法一)

  (2)①當(dāng)為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立  6分

  ,等號(hào)在時(shí)取得.

  此時(shí)需滿足  7分

 、诋(dāng)為奇數(shù)時(shí),要使不等式恒成立,

  即需不等式恒成立  8分

  是隨的增大而增大,時(shí)取得最小值

  此時(shí)需滿足  9分

  綜合①、②可得的取值范圍是  10分

  (3),

  若成等比數(shù)列,則,即  11分

  (法一)由,可得

  即  12分

    13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足xnan=xn+1an+1=xn+2an+2(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:
n
2
-
1
3
x1-1
x2-1
+
x2-1
x3-1
+…+
xn-1
xn+1-1
n
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•南匯區(qū)二模)已知數(shù)列{an}中,若2an=an-1+an+1(n∈N*,n≥2),則下列各不等式中一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足數(shù)學(xué)公式(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列{an}是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列{xn},滿足(n∈N*).
(Ⅰ)證明數(shù)列{xn}是等比數(shù)列;
(Ⅱ)把數(shù)列{xn}中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,當(dāng)x3=8,x7=128時(shí),求第m行各數(shù)的和;
(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列{xn},證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案