如圖,已知PE切⊙O于點E,割線PBA交⊙OAB兩點,∠APE的平分線和AE,BE分別交于點C,D.

求證:(1)CEDE;(2).

(1)見解析(2)見解析

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知AB是圓O的直徑,C為圓O上一點,CD⊥AB于點D,弦BE與CD、AC分別交于點M、N,且MN=MC

(1)求證:MN=MB;
(2)求證:OC⊥MN。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,過圓O外一點P作該圓的兩條割線PABPCD,分別交圓O于點A,B,CD,弦ADBC交于點Q,割線PEF經(jīng)過點Q交圓O于點E,F,點MEF上,且∠BAD=∠BMF.

(1)求證:PA·PBPM·PQ;
(2)求證:∠BMD=∠BOD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2),圓O1的弦AB交圓O2于點C(O1不在AB上).

求證:AB∶AC為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,D為△ABC中BC邊上的一點,∠CAD=∠B,若AD=6,AB=8,BD=7,求DC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(拓展深化)如圖,已知△ABC中的兩條角平分線AD和CE相交于H,∠B=60°,F(xiàn)在AC上,且AE=AF.

(1)證明:B、D、H、E四點共圓;
(2)證明:CE平分∠DEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(拓展深化)如圖①所示,△ABC內(nèi)接于⊙O,AB=AC,D是BC邊上的一點,E是直線AD和△ABC外接圓的交點.

(1)求證:AB2=AD·AE;
(2)如圖②所示,當D為BC延長線上的一點時,第(1)題的結論成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB,⊙O交直線OB于E、D,連結EC、CD.

(Ⅰ)求證:直線AB是⊙O的切線;
(Ⅱ)若tan∠CED=,⊙O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正三角形ABC外接圓的半徑為1,點M、N分別是邊AB、AC的中點,延長MN與△ABC的外接圓交于點P,求線段NP的長.

查看答案和解析>>

同步練習冊答案