(本題滿分16分)已知函數(shù)(其中為常數(shù),)為偶函數(shù).

(1) 求的值;

(2) 用定義證明函數(shù)上是單調(diào)減函數(shù);

(3) 如果,求實(shí)數(shù)的取值范圍.

 

【答案】

(1);(2)見(jiàn)解析;(3)

【解析】

試題分析:(1) 是偶函數(shù)有.…………4分

(2)由(1) .     設(shè),         ………………6分

.  ……………………8分

.

上是單調(diào)減函數(shù). ……………………10分

(3)由(2)得上為減函數(shù),又是偶函數(shù),所以上為單調(diào)增函數(shù).                ……………………………………………12分

不等式,4>.

解得.    所以實(shí)數(shù)的取值范圍是.…………………16分

說(shuō)明(3)如果是分情況討論,知道分類給2分.并做對(duì)一部分則再給2分.

考點(diǎn):函數(shù)的奇偶性;函數(shù)的單調(diào)性;利用函數(shù)的奇偶性和單調(diào)性解不等式。

點(diǎn)評(píng):解這類不等式,關(guān)鍵是利用函數(shù)的奇偶性和它在定義域內(nèi)的單調(diào)性,去掉“f”符號(hào),轉(zhuǎn)化為代數(shù)不等式組求解,但要特別注意函數(shù)定義域的作用。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本題滿分16分)
已知函數(shù),且對(duì)任意,有.
(1)求
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
(3)討論函數(shù)的零點(diǎn)個(gè)數(shù)?(提示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省高三10月階段性測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)為實(shí)常數(shù)).

(I)當(dāng)時(shí),求函數(shù)上的最小值;

(Ⅱ)若方程在區(qū)間上有解,求實(shí)數(shù)的取值范圍;

(Ⅲ)證明:

(參考數(shù)據(jù):

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分) 已知橢圓的離心率為,分別為橢圓的左、右焦點(diǎn),若橢圓的焦距為2.

 ⑴求橢圓的方程;

⑵設(shè)為橢圓上任意一點(diǎn),以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點(diǎn)時(shí),求△面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),。

(Ⅰ)求的值;

(Ⅱ)求函數(shù)上的解析式;

(Ⅲ)若關(guān)于的方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題

本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案