已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知,,,分別是橢圓的四個頂點(diǎn),△是一個邊長為2的等邊三角形,其外接圓為圓.
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線與交于點(diǎn).
(ⅰ)求的最大值;
(ⅱ)試問:,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)拋物線:的準(zhǔn)線與軸交于點(diǎn),焦點(diǎn)為;橢圓以和為焦點(diǎn),離心率.設(shè)是與的一個交點(diǎn).
(1)求橢圓的方程.
(2)直線過的右焦點(diǎn),交于兩點(diǎn),且等于的周長,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點(diǎn),且離心率為.斜率為的直線與橢圓交于A、B兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點(diǎn)分別為、,短軸兩個端點(diǎn)為、,且四邊形是邊長為2的正方形.
(1)求橢圓方程;
(2)若分別是橢圓長軸的左右端點(diǎn),動點(diǎn)滿足,連接,交橢圓于點(diǎn),證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓恒過直線的交點(diǎn)?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)作斜率為的直線交曲線于、兩點(diǎn),且,又點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為點(diǎn),試問、、、四點(diǎn)是否共圓?若共圓,求出圓心坐標(biāo)和半徑;若不共圓,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點(diǎn),且
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點(diǎn),若過點(diǎn)M(2,0)的直線與橢圓相交于不同兩點(diǎn)A和B,且滿足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率e=,一條準(zhǔn)線方程為x=
(1)求橢圓C的方程;
(2)設(shè)G、H為橢圓C上的兩個動點(diǎn),O為坐標(biāo)原點(diǎn),且OG⊥OH.
①當(dāng)直線OG的傾斜角為60°時,求△GOH的面積;
②是否存在以原點(diǎn)O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com