7.已知拋物線C:x2=2py(p>0),過其焦點作斜率為1的直線l交拋物線C于M、N兩點,且|MN|=16.
(Ⅰ)求拋物線C的方程;
(Ⅱ)已知動圓P的圓心在拋物線C上,且過定點D(0,4),若動圓P與x軸交于A、B兩點,且|DA|<|DB|,求$\frac{|DA|}{|DB|}$的最小值.

分析 (Ⅰ)設(shè)拋物線的焦點為$F(0,\frac{p}{2})$,則直線$l:y=x+\frac{p}{2}$,聯(lián)立方程組,利用韋達定理得到x1+x2=2p,y1+y2=3p,通過|MN|=y1+y2+p=4p=16,求出p,即可求出拋物線C的方程.
(Ⅱ)設(shè)動圓圓心P(x0,y0),A(x1,0),B(x2,0),得到$x_0^2=8{y_0}$,圓$P:{(x-{x_0})^2}+{(y-{y_0})^2}=x_0^2+{({y_0}-4)^2}$,令y=0,解得x1=x0-4,x2=x0+4,求$\frac{|DA|}{|DB|}$的表達式,推出x0的范圍,然后求解$\frac{|DA|}{|DB|}$的最小值.

解答 解:(Ⅰ)設(shè)拋物線的焦點為$F(0,\frac{p}{2})$,則直線$l:y=x+\frac{p}{2}$,
由$\left\{\begin{array}{l}y=x+\frac{p}{2}\\{x^2}=2py\end{array}\right.$,得x2-2px-p2=0…(2分)
∴x1+x2=2p,∴y1+y2=3p,
∴|MN|=y1+y2+p=4p=16,∴p=4…(4分)
∴拋物線C的方程為x2=8y…(5分)
(Ⅱ)設(shè)動圓圓心P(x0,y0),A(x1,0),B(x2,0),則$x_0^2=8{y_0}$,
且圓$P:{(x-{x_0})^2}+{(y-{y_0})^2}=x_0^2+{({y_0}-4)^2}$,
令y=0,整理得:${x^2}-2{x_0}x+x_0^2-16=0$,
解得:x1=x0-4,x2=x0+4,…(7分),
$\frac{|DA|}{|DB|}=\sqrt{\frac{{{{({x_0}-4)}^2}+16}}{{{{({x_0}+4)}^2}+16}}}=\sqrt{\frac{{x_0^2-8{x_0}+32}}{{x_0^2+8{x_0}+32}}}=\sqrt{1-\frac{{16{x_0}}}{{x_0^2+8{x_0}+32}}}$,…(9分)
當(dāng)x0=0時,$\frac{|DA|}{|DB|}=1$,
當(dāng)x0≠0時,$\frac{|DA|}{|DB|}=\sqrt{1-\frac{16}{{{x_0}+8+\frac{32}{x_0}}}}$,∵x0>0,∴${x_0}+\frac{32}{x_0}≥8\sqrt{2}$,$\frac{|DA|}{|DB|}≥\sqrt{1-\frac{16}{{8+8\sqrt{2}}}}=\sqrt{3-2\sqrt{2}}=\sqrt{2}-1$,∵$\sqrt{2}-1<1$,
所以$\frac{|DA|}{|DB|}$的最小值為$\sqrt{2}-1$.   …(12分)

點評 本題考查直線與雙曲線的位置關(guān)系,拋物線與雙曲線的位置關(guān)系的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱柱ABC-A1B1C1側(cè)棱垂直于底面,AB=4,AC=BC=3,D為AB的中點.
(Ⅰ)求證:AC1∥平面B1CD
(Ⅱ) 若AB1⊥A1C,求二面角A1-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\frac{x}{lnx}-ax(x>0$且x≠1).
(1)當(dāng)a=0時,求函數(shù)f(x)的極小值;
(2)若函數(shù)f(x)在(1,+∞)上為減函數(shù),求實數(shù)a的最小值;
(3)若?x∈[e,e2],使f(x)≤$\frac{1}{4}$成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一個幾何體的三視圖如圖所示,則該幾何體的體積為40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點為F,若過點F且斜率為1的直線與拋物線相交于M,N兩點,且|MN|=8.
(1)求拋物線C的方程;
(2)設(shè)直線l為拋物線C有且只有一個公共點,且l∥MN,點P在直線l上運動,求$\overrightarrow{PM}$•$\overrightarrow{PN}$的最小值,并判斷此時點P與以MN為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{alnx+b}{x}$(a≤2且a≠0),函數(shù)f(x)在點(1,f(1))處的切線過點(3,0)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)與函數(shù)g(x)=a+2-x-$\frac{2}{x}$的圖象在區(qū)間(0,2)有且只有一個交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{3}$sin2x-cos2x-2m在[0,$\frac{π}{2}$]上有兩個零點,則m的取值范圍為(  )
A.[$\frac{1}{2}$,1)B.($\frac{1}{2}$,1]C.[$\frac{\sqrt{3}}{2}$,1)D.($\frac{\sqrt{3}}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.?dāng)?shù)學(xué)家歐拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱之為三角形的歐拉線.若△ABC的頂點A(2,0),B(0,4),且△ABC的歐拉線的方程為x-y+2=0,則頂點C的坐標(biāo)為(  )
A.(-4,0)B.(-4,-2)C.(-2,2)D.(-3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x≥-3}\\{y≤2}\\{x-y-1≤0}\end{array}\right.$,則$\frac{y-1}{x-4}$的最大值為$\frac{5}{7}$.

查看答案和解析>>

同步練習(xí)冊答案