【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè) ,三棱錐的體積 ,求A到平面PBC的距離。

【答案】1)證明見解析 2 到平面的距離為

【解析】試題分析:(1)連結(jié)BD、AC相交于O,連結(jié)OE,則PB∥OE,由此能證明PB∥平面ACE.(2)以A為原點(diǎn),ABx軸,ADy軸,APz軸,建立空間直角坐標(biāo)系,利用向量法能求出A到平面PBD的距離

試題解析:(I)設(shè)BDAC于點(diǎn)O,連結(jié)EO。

因?yàn)?/span>ABCD為矩形,所以OBD的中點(diǎn)。

EPD的中點(diǎn),所以EO∥PB

EO平面AEC,PB平面AEC

所以PB∥平面AEC。

II

,可得.

。

由題設(shè)易知,所以

,

所以到平面的距離為

2:等體積法

,可得.

由題設(shè)易知,BC

假設(shè)到平面的距離為d,

又因?yàn)?/span>PB=

所以

又因?yàn)?/span>(),

,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐底面中,.回答下面的問題.

1)在側(cè)面中能否作一條直線段使其與平行?如果能,請(qǐng)寫出作圖過程并給出證明;如果不能,請(qǐng)說明理由.

2)在側(cè)面中能否作一條直線段使其與平行?如果能,請(qǐng)寫出作圖過程并給出證明;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖如圖所示,則函數(shù)的解析式為___________,方程的實(shí)根個(gè)數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本題滿分14分如圖,已知橢圓,其左右焦點(diǎn)為,過點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,的中垂線與軸和軸分別交于兩點(diǎn),且、、構(gòu)成等差數(shù)列.

1求橢圓的方程;

2的面積為,為原點(diǎn)的面積為.試問:是否存在直線,使得?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)的時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下表:

超過1小時(shí)

不超過1小時(shí)

20

8

12

m

1)求mn;

2)能否有95多的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?

3)以樣本中學(xué)生參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的頻率作為該事件發(fā)生的概率,現(xiàn)從該校學(xué)生中隨機(jī)調(diào)查6名學(xué)生,試估計(jì)6名學(xué)生中一周參加社區(qū)服務(wù)時(shí)間超過1小時(shí)的人數(shù).

附:

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對(duì)某市工薪階層關(guān)于樓市限購(gòu)令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)樓市限購(gòu)令贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為月收入以5500元為分界點(diǎn)對(duì)樓市限購(gòu)令的態(tài)度有差異;

月收入不低于55百元的人數(shù)

月收入低于55百元的人數(shù)

合計(jì)

贊成

a=______________

c=______________

______________

不贊成

b=______________

d=______________

______________

合計(jì)

______________

______________

______________

(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。

參考公式:,其中.

參考值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)若有極小值且極小值為0,求的值;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義在上的函數(shù),若存在距離為的兩條直線,使得對(duì)任意的都有,則稱函數(shù)有一個(gè)寬為的通道.給出下列函數(shù):①;②;③;④.其中在區(qū)間上通道寬度為1的函數(shù)由__________ (寫出所有正確的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案