(本小題滿分12分)
已知函數(shù)
(e為自然對數(shù)的底數(shù)).
(Ⅰ)當
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意
,不等式
恒成立,求實數(shù)
t的取值范圍.
(1)函數(shù)
的單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
(2)
.
試題分析:解:(Ⅰ)當
時,
,
.
由
,解得
;
,解得
.
∴函數(shù)
的單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
. ……………… 5分
(Ⅱ)依題意:對于任意
,不等式
恒成立,
即
即
在
上恒成立.
令
,∴
.
當
時,
;當
時,
.
∴函數(shù)
在
上單調(diào)遞增;在
上單調(diào)遞減.
所以函數(shù)
在
處取得極大值
,即為在
上的最大值.
∴實數(shù)
t的取值范圍是
. …………………… 12分
點評:根據(jù)導(dǎo)數(shù)的符號來確定函數(shù)單調(diào)性,以及結(jié)合單調(diào)性求解最值,進而得到不等式的恒成立的證明。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
的導(dǎo)數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知a為實數(shù),
(1)求導(dǎo)數(shù)
;
(2)若
,求
在[-2,2] 上的最大值和最小值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知函數(shù)
,則函數(shù)
在
處的切線方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是自然對數(shù)底數(shù),若函數(shù)
的定義域為
,則實數(shù)
的取值范圍為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
,函數(shù)
的導(dǎo)函數(shù)是
,且
是奇函數(shù),則
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
函數(shù)
在
處的切線方程是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知a=4
,則二項式(x
2+
)
5的展開式中x的系數(shù)為
.
查看答案和解析>>