已知橢圓的標(biāo)準(zhǔn)方程為
x2
6-m
+
y2
m-1
=1

(1)若橢圓的焦點(diǎn)在x軸,求m的取值范圍;          
(2)試比較m=2與m=3時(shí)兩個(gè)橢圓哪個(gè)更扁.
分析:(1)根據(jù)橢圓的焦點(diǎn)在x軸,可得
6-m>m-1
m-1>0
,從而可求m的取值范圍;
(2)分別計(jì)算m=2與m=3時(shí),橢圓的離心率,比較即可得出結(jié)論.
解答:解:(1)由題意:
6-m>m-1
m-1>0
,得1<m<
7
2
(5分)
(2)當(dāng)m=2時(shí),橢圓
x2
4
+
y2
1
=1
的離心率e1=
3
2

當(dāng)m=3時(shí),橢圓
x2
3
+
y2
2
=1
的離心率e2=
3
3
e1

所以m=2時(shí)的橢圓更扁.                           (5分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的標(biāo)準(zhǔn)方程為
x2
25
+
y2
m2
=1(m>0)
,并且焦距為6,則實(shí)數(shù)m的值為
4或
34
4或
34

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的標(biāo)準(zhǔn)方程為
x2
6n-3
+
y2
2n
=1(n∈N*)
,若橢圓的焦距為2
5
,則n的取值集合為
{2,4,5}
{2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•奉賢區(qū)二模)已知橢圓的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
,則該橢圓的焦距為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆云南省潞西市高二下學(xué)期期中文理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知橢圓的標(biāo)準(zhǔn)方程為,則橢圓的離心率為(       )

A、       B、      C、      D、 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案