【題目】已知函數(shù),其中.
若是函數(shù)的極值點,求實數(shù)a的值;
若對任意的為自然對數(shù)的底數(shù),都有成立,求實數(shù)a的取值范圍.
【答案】(1);(2)。
【解析】
(1)是函數(shù),求導(dǎo)得,令=0求出a即可.(2)變量分離得,轉(zhuǎn)化為求f(x)在的最小值,對f(x)求導(dǎo),按,三種情況進行討論f(x)在的單調(diào)性,得出最小值,求出a的范圍即可.
(1)由已知,,
所以 因為是函數(shù)的極值點,
所以,即,因為,所以.
(2)對任意的都有成立,即恒成立,
因為 ,且,,
①且時,,
所以函數(shù)在上是增函數(shù),
,
由,得,又,不合題意.
②當時,若,則,
若,則,
函數(shù)在上是減函數(shù),在上是增函數(shù),,
由,得,又,
③當且時,,
函數(shù)在上是減函數(shù),,
由,得,又,
綜上所述,的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的一個焦點是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過點F的直線交橢圓C于M,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)二次函數(shù)的圖像過點和,且對于任意實數(shù),不等式恒成立
(1)求的表達式;
(2)設(shè),若在上是增函數(shù),求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為2的正方體中,M是線段AB上的動點.
證明:平面;
若點M是AB中點,求二面角的余弦值;
判斷點M到平面的距離是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=2,BC=CC1=,P是BC1上一動點,則A1P+PC的最小值為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線與橢圓有相同焦點,且經(jīng)過點(4,6).
(1)求雙曲線方程;
(2)若雙曲線的左,右焦點分別是F1,F2,試問在雙曲線上是否存在點P,使得|PF1|=5|PF2|.請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列的首項和公差都是非負的整數(shù),項數(shù)不少于3,且各項和為,則這樣的數(shù)列共有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,則( )
A. 圖象關(guān)于直線對稱 B. 圖象關(guān)于點中心對稱
C. 在區(qū)間單調(diào)遞增 D. 在區(qū)間上單調(diào)遞減
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com