分析 (1)欲求在點(1,f(1))處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結(jié)合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(2)先求導,再構(gòu)造函數(shù)設h(x)=-x2+(2-a)x+a-$\frac{1}{x}$+lnx 由h'(x)在(0,1]上是減函數(shù),可得h'(x)≥h'(1)=2-a,通過研究2-a的正負可判斷h(x)的單調(diào)性,進而可得函數(shù)F(x)的單調(diào)性,可求參數(shù)的取值范圍
解答 解:(1)a=2,y=f(x)=x2+2x-lnx,
∴f′(x)=2x+2-$\frac{1}{x}$,
∴f′(1)=2+2-1=3,f(1)=1+2-0=3,
∴曲線在點(1,f(1))處的切線方程為:y-3=3×(x-1),即y=3x.
(2)g(x)=$\frac{f(x)}{{e}^{x}}$,f(x)=x2+ax-lnx,
∴g′(x)=$\frac{-{x}^{2}+(2-a)x+a-\frac{1}{x}+lnx}{{e}^{x}}$,
設h(x)=-x2+(2-a)x+a-$\frac{1}{x}$+lnx,
則h′(x)=-2x+$\frac{1}{{x}^{2}}$+$\frac{1}{x}$+2-a,
易知h′(x)在(0,+∞)上是減函數(shù),
從而h′(x)≥h′(1)=2-a,
①當2-a≥0時,即a≤2時,h′(x)≥0,h(x)在(0,1)上是增函數(shù)
∵h(1)=0,
∴h(x)≤0在(0,1]上恒成立,
即g′(x)≤0區(qū)間(0,1]上是單調(diào)遞減函數(shù),
∴a≤2滿足題意,
②當2-a<0時,即a>2時,設函數(shù)h′(x)的唯一零點為x0,則h(x)在(0,x0)上單調(diào)遞增,在(x0,1)單調(diào)遞減,
又∵h(1)=0,
∴h(x0)>0,
又∵h(e-a)<0,
∴h(x)在(0,1)內(nèi)有唯一一個零點m,
當x∈(0,m)時,h(x)<0,
當x∈(m,1)時,h(x)>0,從而f(x)在(0,m)上單調(diào)遞減,在(m,1)上單調(diào)遞增,與在區(qū)間(0,1]上是減函數(shù)矛盾,
∴a>2不合題意,
綜合所述a的取值范圍為(-∞,2].
點評 考查學生利用導數(shù)研究函數(shù)的單調(diào)能力,函數(shù)單調(diào)性的判定,以及導數(shù)的運算,試題具有一定的綜合性,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [30°,45°] | B. | [45°,60°] | C. | [30°,90°) | D. | [60°,90°) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①③ | B. | ①④ | C. | ②③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(2a)<f(2)<f(log2a) | B. | f(2)<f(2a)<f(log2a) | C. | f(log2a)<f(2a)<f(2) | D. | f(2)<f(log2a)<f(2a) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $2\sqrt{2}$ | D. | $\frac{{5\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com