【題目】已知橢圓的右焦點為,是橢圓上一點,軸,.
(1)求橢圓的標準方程;
(2)若直線與橢圓交于、兩點,線段的中點為,為坐標原點,且,求面積的最大值.
【答案】(1);(2).
【解析】
(1)設(shè)橢圓的焦距為,可得出點在橢圓上,將這個點的坐標代入橢圓的方程可得出,結(jié)合可求出的值,從而可得出橢圓的標準方程;
(2)分直線的斜率不存在與存在兩種情況討論,在軸時,可得出,從而求出的面積;在直線斜率存在時,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓方程聯(lián)立,利用韋達定理結(jié)合,得出,計算出與的高,可得出面積的表達式,然后可利用二次函數(shù)的基本性質(zhì)求出面積的最大值.
(1)設(shè)橢圓的焦距為,由題知,點,,
則有,,又,,,
因此,橢圓的標準方程為;
(2)當軸時,位于軸上,且,
由可得,此時;
當不垂直軸時,設(shè)直線的方程為,與橢圓交于,,
由,得.
,,從而
已知,可得.
.
設(shè)到直線的距離為,則,
.
將代入化簡得.
令,
則.
當且僅當時取等號,此時的面積最大,最大值為.
綜上:的面積最大,最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點
(1)求橢圓的方程;
(2)設(shè)不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中, 是正方形, 是梯形, , , 平面且, 分別為棱的中點.
(Ⅰ)求證:平面平面;
(Ⅱ)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當時,B.
C.變量之間呈負相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:
(1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);
(2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;
(3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓周上有1994個點,將它們?nèi)境扇舾煞N不同的顏色,且每種顏色的點數(shù)各不相同.今在每種顏色的點集中各取一個點,組成頂點顏色各不相同的圓內(nèi)接多邊形,為了要使這樣的多邊形個數(shù)最多,應(yīng)將1994個點染成多少種不同的顏色?且每種顏色的點集各含有多少個點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某地遭遇嚴重干旱,某鄉(xiāng)計劃向上級申請支援,為上報需水量,鄉(xiāng)長事先抽樣調(diào)查100戶村民的月均用水量,得到這100戶村民月均用水量(單位:t)的頻率分布表如下:
月均用水量分組 | 頻數(shù) | 頻率 |
12 | ||
40 | ||
0.18 | ||
6 | ||
合計 | 100 | 1.00 |
(1)請完成該頻率分布表,并畫出相對應(yīng)的頻率分布直方圖.
(2)樣本的中位數(shù)是多少?
(3)已知上級將按每戶月均用水量向該鄉(xiāng)調(diào)水,若該鄉(xiāng)共有1200戶,請估計上級支援該鄉(xiāng)的月調(diào)水量是多少噸.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com