【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下:
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級不是一級的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
【答案】(1).
(2)分布列見解析,.
【解析】分析:(1)由題可知:建模能力一級的學(xué)生是;建模能力二級的學(xué)生是;建模能力三級的學(xué)生是,進(jìn)而可求解概率.
(2) 由題可知,數(shù)學(xué)核心素養(yǎng)一級:,數(shù)學(xué)核心素養(yǎng)不是一級的:;的可能取值為1,2,3,4,5. 具體如下:
學(xué)生 編號 | ||||||||||
綜合 指標(biāo) | 7 | 7 | 9 | 5 | 7 | 8 | 6 | 8 | 4 | 6 |
核心素養(yǎng)等級 | 一級 | 一級 | 一級 | 二級 | 一級 | 一級 | 二級 | 一級 | 三級 | 二級 |
分別計算當(dāng)時,的值,進(jìn)而可得隨機(jī)變量的分布列及其數(shù)學(xué)期望
詳解:(1)由題可知:建模能力一級的學(xué)生是;建模能力二級的學(xué)生是;建模
能力三級的學(xué)生是.
記“所取的兩人的建模能力指標(biāo)相同”為事件,
則.
(2)由題可知,數(shù)學(xué)核心素養(yǎng)一級: ,數(shù)學(xué)核心素養(yǎng)不是一級的: ;的可能取值為1,2,3,4,5.
; ;
;;
.
隨機(jī)變量的分布列為:
1 | 2 | 3 | 4 | 5 | |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若存在、滿足.求證: (其中為的導(dǎo)函數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點,證明:的面積為定值(O為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點,則它在回歸直線左下方的概率為______.
單價(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之?dāng)?shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,…,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )
A. 是偶數(shù)?,? B. 是奇數(shù)?,?
C. 是偶數(shù)?, ? D. 是奇數(shù)?,?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.
(1)證明:平面平面;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)若是的兩個不同零點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.
(2)設(shè),函數(shù),存在個零點.
(i)求的取值范圍;
(ii)設(shè)分別是這個零點中的最小值與最大值,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為 .
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)已知點,若點的極坐標(biāo)為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com