已知A、B兩地的路程為240千米.某經銷商每天都要用汽車或火車將噸保鮮品一次 性由A地運往B地.受各種因素限制,下一周只能采用汽車和火車中的一種進行運輸,且須提前預訂.
現(xiàn)有貨運收費項目及收費標準表、行駛路程s(千米)與行駛時間t(時)的函數(shù)圖象(如圖1)、上周貨運量折線統(tǒng)計圖(如圖2)等信息如下:
貨運收費項目及收費標準表

運輸工具
運輸費單價:元/(噸•千米)
冷藏費單價:元/(噸•時)
固定費用:元/次
汽車
2
5
200
火車
1.6
5
2280
          
(1)汽車的速度為       千米/時,火車的速度為       千米/時:
(2)設每天用汽車和火車運輸?shù)目傎M用分別為(元)和(元),分別求、的函數(shù)關系式(不必寫出的取值范圍),及為何值時(總費用=運輸費+冷藏費+固定費用)
(3)請你從平均數(shù)、折線圖走勢兩個角度分析,建議該經銷商應提前為下周預定哪種運輸工具,才能使每天的運輸總費用較?

(1)60,100; (2)x>20(3)從折線圖走勢分析,上周貨運量周四(含周四)后大于20且呈上升趨勢,建議預訂火車費用較省

解析試題分析:解:(1)根據圖表上點的坐標為:(2,120),(2,200), 
∴汽車的速度為 60千米/時,火車的速度為 100千米/時,
故答案為:60,100;             2分
(2)依據題意得出:
y 汽=240×2x+240 60 ×5x+200,
=500x+200;
y 火=240×1.6x+240 100 ×5x+2280,
=396x+2280.              6分
若y 汽>y 火,得出500x+200>396x+2280.
∴x>20;                 7分
(3)上周貨運量. x =(17+20+19+22+22+23+24)÷7=21>20,
從平均數(shù)分析,建議預定火車費用較。
從折線圖走勢分析,上周貨運量周四(含周四)后大于20且呈上升趨勢,建議預訂火車費用較。                     9分
考點:函數(shù)模型的運用
點評:解決的關鍵是對于函數(shù)的表示,能結合位移和速度的關系式來得到,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/小時)的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)當 ,畫出函數(shù)的圖像,并求出函數(shù)的零點;
(2)設,且對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)的最小值為1,且
(1)求的解析式;  
(2)若在區(qū)間上不單調,求實數(shù)的取值范圍;
(3)在區(qū)間上,的圖像恒在的圖像上方,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值;
(2)求f(x)的表達式;
(3)利用“函數(shù)(其中為大于0的常數(shù)),在上是減函數(shù),在上是增函數(shù)”這一性質,求隔熱層修建多厚時,總費用f(x)達到最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設二次函數(shù)滿足下列條件:①當時,的最小值為,且圖像關于直線對稱;②當時,恒成立.
(1)求的值;  
(2)求的解析式;
(3)若在區(qū)間上恒有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

水庫的蓄水量隨時間而變化,現(xiàn)用表示時間,以月為單位,年初為起點,根據歷年數(shù)據,某水庫的蓄水量(單位:億立方米)關于的近似函數(shù)關系式為:

(1)該水庫的蓄水量小于50的時期稱為枯水期,以表示第月份(),問:同一年內哪些月份是枯水期?
(2)求一年內哪個月份該水庫的蓄水量最大,并求最大蓄水量。(取計算)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

建造一條防洪堤,其斷面為等腰梯形,腰與底邊成角為(如圖),考慮到防洪堤堅固性及石塊用料等因素,設計其斷面面積為平方米,為了使堤的上面與兩側面的水泥用料最省,則斷面的外周長(梯形的上底線段與兩腰長的和)要最小.

(1)求外周長的最小值,并求外周長最小時防洪堤高h為多少米?
(2)如防洪堤的高限制在的范圍內,外周長最小為多少米?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)南昌市在加大城市化進程中,環(huán)境污染問題也日益突出。據環(huán)保局測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設).
(1) 試將表示為的函數(shù);
(2) 若,且時,取得最小值,試求的值.

查看答案和解析>>

同步練習冊答案