甲、乙兩人輪流投籃,每人每次投一球,約定甲先投且先投中者獲勝,一直每人都已投球3次時(shí)投籃結(jié)束,設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響。(Ⅰ)求乙獲勝的概率;(Ⅱ)求投籃結(jié)束時(shí)乙只投了2個(gè)球的概率。

 

【答案】

:(Ⅰ)(Ⅱ)

【解析】:設(shè)分別表示甲、乙在第k次投籃中,則

(Ⅰ)記“乙獲勝”為事件C,由互斥事件有一個(gè)發(fā)生的概率與相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式知

(Ⅱ)記“投籃結(jié)束時(shí)乙只投了2個(gè)球”為事件D,則由互斥事件有一個(gè)發(fā)生的概率與相互獨(dú)立事件同時(shí)發(fā)生的概率計(jì)算公式知

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為
1
3
,乙每次投籃投中的概率為
1
2
,且各次投籃互不影響.
(Ⅰ) 求甲獲勝的概率;
(Ⅱ) 求投籃結(jié)束時(shí)甲的投籃次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)甲、乙兩人輪流投籃,每人每次投一球.約定甲先投且先投中者獲勝,一直到有人獲勝或每人都已投球三次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為
1
3
,乙每次投籃投中的概率為
1
2
,且各次投籃互不影響.
(Ⅰ)求乙獲勝的概率;
(Ⅱ)求投籃結(jié)束時(shí)乙只投了2個(gè)球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人輪流投籃直至某人投中為止,已知甲投籃每次投中的概率為0.4,乙每次投籃投中的概率為0.6,各次投籃互不影響.設(shè)甲投籃的次數(shù)為,若乙先投,且兩人投籃次數(shù)之和不超過4次,求的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(重慶卷解析版) 題型:解答題

甲、乙兩人輪流投籃,每人每次投一票.約定甲先投中者獲勝,一直到有人獲勝或每人都已投球3次時(shí)投籃結(jié)束.設(shè)甲每次投籃投中的概率為,乙每次投籃投中的概率為,且各次投籃互不影響.[來(Ⅰ) 求甲獲勝的概率;(Ⅱ)求投籃結(jié)束時(shí)甲的投籃次數(shù)的分布列與期望

 

查看答案和解析>>

同步練習(xí)冊(cè)答案