【題目】已知函數(shù)且點(diǎn)在函數(shù)的圖象上.

1)求函數(shù)的解析式,并在圖中的直角坐標(biāo)系中畫(huà)出函數(shù)的圖象;

2)求不等式的解集;

3)若方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

【答案】(1),圖像見(jiàn)解析(2)(3)

【解析】

1)將點(diǎn)代入,即可求解的值,進(jìn)而求得函數(shù)的解析式,畫(huà)出函數(shù)fx)的圖象.

2)分為兩種情況分別求解不等式,再取并集即可得不等式的解集.

3)欲求滿足方程有兩個(gè)不相等的實(shí)數(shù)根的取值范圍,可使函數(shù)有兩個(gè)不同的交點(diǎn),畫(huà)出二者的圖象即可判斷出實(shí)數(shù)的取值范圍.

解:(1)由的圖象經(jīng)過(guò)點(diǎn),

可得,,解得,

,

函數(shù)的圖象如下圖:

2即為,

,

則解集為;

3有兩個(gè)不相等的實(shí)數(shù)根,

即有的圖象和直線有兩個(gè)交點(diǎn),

由圖象可得,,

可得的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;

( Ⅱ ) 設(shè)直線軸和軸的交點(diǎn)分別為,為圓上的任意一點(diǎn),求的取值范圍.

【答案】(1);.

(2).

【解析】試題分析】(I)利用圓心和半徑,寫出圓的參數(shù)方程,將圓的極坐標(biāo)方程展開(kāi)后化簡(jiǎn)得直角坐標(biāo)方程.(II)求得兩點(diǎn)的坐標(biāo), 設(shè)點(diǎn),代入向量,利用三角函數(shù)的值域來(lái)求得取值范圍.

試題解析】

(Ⅰ)圓的參數(shù)方程為為參數(shù)).

直線的直角坐標(biāo)方程為.

(Ⅱ)由直線的方程可得點(diǎn),點(diǎn).

設(shè)點(diǎn),則 .

.

由(Ⅰ)知,則 .

因?yàn)?/span>,所以.

型】解答
結(jié)束】
23

【題目】選修4-5:不等式選講

已知函數(shù), .

(Ⅰ)若對(duì)于任意, 都滿足,求的值;

(Ⅱ)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,定長(zhǎng)為3的線段兩端點(diǎn)、分別在軸,軸上滑動(dòng),在線段上,且.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè)點(diǎn)是軌跡上一點(diǎn),從原點(diǎn)向圓作兩條切線分別與軌跡交于點(diǎn),,直線,的斜率分別記為,.

①求證:

②求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對(duì)任意,都有,設(shè)的導(dǎo)函數(shù),,則函數(shù)的零點(diǎn)個(gè)數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得的利潤(rùn)分別為(萬(wàn)元),事先根據(jù)相關(guān)資料得出它們與投入資金(萬(wàn)元)的數(shù)據(jù)分別如下表和圖所示:其中已知甲的利潤(rùn)模型為,乙的利潤(rùn)模型為.(為參數(shù),且.

1)請(qǐng)根據(jù)下表與圖中數(shù)據(jù),分別求出甲、乙兩種產(chǎn)品所得的利潤(rùn)與投入資金(萬(wàn)元)的函數(shù)模型

2)今將萬(wàn)資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于萬(wàn)元.設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),并設(shè)總利潤(rùn)為(萬(wàn)元),如何分配投入資金,才能使總利潤(rùn)最大?并求出最大總利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線ly=2x-4.設(shè)圓C的半徑為1,圓心在l.

(1)若圓心C也在直線yx-1上,過(guò)點(diǎn)A作圓C的切線,求切線的方程;

(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分12分)

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)的距離的最

小值為,離心率為。

(I)求橢圓的方程;

)過(guò)點(diǎn)(1,0)作直線、兩點(diǎn),試問(wèn):在軸上是否存在一個(gè)定點(diǎn),使為定值?若存在,求出這個(gè)定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的圓心在拋物線上,圓過(guò)原點(diǎn)且與拋物線的準(zhǔn)線相切.

(1)求該拋物線的方程;

(2)過(guò)拋物線焦點(diǎn)的直線交拋物線于, 兩點(diǎn),分別在點(diǎn), 處作拋物線的兩條切線交于點(diǎn),求三角形面積的最小值及此時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案