【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,B1 C和C1D與底面A1B1C1D1所成的角分別為60°和45°,則異面直線B1C和C1D所成角的余弦值為(

A.
B.
C.
D.

【答案】A
【解析】解:設(shè)長(zhǎng)方體的高為1,連接B1A、B1C、AC
∵B1C和C1D與底面所成的角分別為600和450 ,
∴∠B1CB=60°,∠C1DC=45°
∴C1D= ,B1C= ,BC= ,CD=1則AC=
∵C1D∥B1A
∴∠AB1C為異面直線B1C和DC1所成角
由余弦定理可得cos∠AB1C=
故選A
【考點(diǎn)精析】認(rèn)真審題,首先需要了解異面直線及其所成的角(異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)M(﹣3,﹣3)的直線l被圓x2+y2+4y﹣21=0所截得的弦長(zhǎng)為 ,則直線l方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某蔬菜商店買進(jìn)的土豆(噸)與出售天數(shù)(天)之間的關(guān)系如下表所示:

2

3

4

5

6

7

9

12

1

2

3

3

4

5

6

8

(1)請(qǐng)根據(jù)上表數(shù)據(jù)在所給網(wǎng)格紙中繪制散點(diǎn)圖;

(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程(其中保留2位有效數(shù)字);

3)根據(jù)(2)中的計(jì)算結(jié)果,若該蔬菜商店買進(jìn)土豆40噸,則預(yù)計(jì)可以銷售多少天(計(jì)算結(jié)果保留整數(shù))?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓E: 的左焦點(diǎn)為F1 , 右焦點(diǎn)為F2 , 離心率e= .過(guò)F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過(guò)點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的外接圓半徑R= ,角A,B,C的對(duì)邊分別是a,b,c,且 =
(1)求角B和邊長(zhǎng)b;
(2)求SABC的最大值及取得最大值時(shí)的a,c的值,并判斷此時(shí)三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A1、A2為橢圓 的左右頂點(diǎn),若在橢圓上存在異于A1、A2的點(diǎn)P,使得 ,其中O為坐標(biāo)原點(diǎn),則橢圓的離心率e的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}的首項(xiàng)為8,Sn是其前n項(xiàng)的和,某同學(xué)經(jīng)計(jì)算得S2=20,S3=36,S4=65,后來(lái)該同學(xué)發(fā)現(xiàn)了其中一個(gè)數(shù)算錯(cuò)了,則該數(shù)為(
A.S1
B.S2
C.S3
D.S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是△ABC的角A,B,C所對(duì)的邊,且c=2,C=
(1)若△ABC的面積等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)= , .

(1)若函數(shù)處取得極值,求的值,并判斷處取得極大值還是極小值.

(2)若上恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案