【題目】已知函數(shù).

1)證明函數(shù)上為減函數(shù);

2)求函數(shù)的定義域,并求其奇偶性;

3)若存在,使得不等式能成立,試求實(shí)數(shù)a的取值范圍.

【答案】1)證明見解析;(2,奇函數(shù);(3.

【解析】

1)利用單調(diào)性定義證明即可.

2)根據(jù)條件可得,其解集即為函數(shù)的定義域,可判斷定義域關(guān)于原點(diǎn)對(duì)稱,再根據(jù)奇偶性定義可判斷函數(shù)的奇偶性.

3)令,考慮上有解即可,參變分離后利用基本不等式可求實(shí)數(shù)的取值范圍.

1,

,

因?yàn)?/span>,,,故,,

,所以函數(shù)上為減函數(shù).

2滿足的不等關(guān)系有:,

,解得,

故函數(shù)的定義域?yàn)?/span>,,該定義域關(guān)于原點(diǎn)對(duì)稱.

,

為奇函數(shù).

3)令,因?yàn)?/span>,故.

故在上不等式能成立即為

存在,使得,所以上能成立,

,則

由基本不等式有,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

所以,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

的最大值為,所以a的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗(yàn)》國家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗(yàn),喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問題:

(1)試計(jì)算喝1瓶啤酒后多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整小時(shí)計(jì)算)

(參數(shù)數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學(xué)試題已知函數(shù)f(x)=lnx-ax+a,aR.

(1)若a=1,求函數(shù)f(x)的極值;

(2)若函數(shù)f(x)有兩個(gè)零點(diǎn),求a的范圍;

(3)對(duì)于曲線y=f(x)上的兩個(gè)不同的點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),記直線PQ的斜率為k,若y=f(x)的導(dǎo)函數(shù)為f ′(x),證明:f ′()<k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,則此橢圓離心率的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:

AQI指數(shù)值

0~50

51~100

101~150

151~200

201~300

>300

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):

下列敘述錯(cuò)誤的是

A. 這20天中AQI指數(shù)值的中位數(shù)略高于100

B. 這20天中的中度污染及以上的天數(shù)占

C. 該市10月的前半個(gè)月的空氣質(zhì)量越來越好

D. 總體來說,該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,當(dāng)時(shí),.

(Ⅰ)若函數(shù)過點(diǎn),求此時(shí)函數(shù)的解析式;

(Ⅱ)若函數(shù)只有一個(gè)零點(diǎn),求實(shí)數(shù)的值;

(Ⅲ)設(shè),若對(duì)任意實(shí)數(shù),函數(shù)上的最大值與最小值的差不大于1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受日月引力影響,海水會(huì)發(fā)生漲退潮現(xiàn)象.通常情況下,船在漲潮時(shí)駛進(jìn)港口,退潮時(shí)離開港口.某港口在某季節(jié)每天港口水位的深度(米)是時(shí)間,單位:小時(shí),表示000—零時(shí))的函數(shù),其函數(shù)關(guān)系式為.已知一天中該港口水位的深度變化有如下規(guī)律:出現(xiàn)相鄰兩次最高水位的深度的時(shí)間差為12小時(shí),最高水位的深度為12米,最低水位的深度為6米,每天1300時(shí)港口水位的深度恰為105米.

1)試求函數(shù)的表達(dá)式;

2)某貨船的吃水深度(船底與水面的距離)為7米,安全條例規(guī)定船舶航行時(shí)船底與海底的距離不小于35米是安全的,問該船在當(dāng)天的什么時(shí)間段能夠安全進(jìn)港?若該船欲于當(dāng)天安全離港,則它最遲應(yīng)在當(dāng)天幾點(diǎn)以前離開港口?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求函數(shù)的單調(diào)遞減區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Ea﹥b﹥0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E.

)求橢圓E的方程;

)設(shè)不過原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.

查看答案和解析>>

同步練習(xí)冊(cè)答案