【題目】已知曲線方程C:x2+y2﹣2x﹣4y+m=0.
(1)當(dāng)m=﹣6時,求圓心和半徑;
(2)若曲線C表示的圓與直線l:x+2y﹣4=0相交于M,N,且 ,求m的值.
【答案】
(1)解:當(dāng)m=﹣6時,方程C:x2+y2﹣2x﹣4y+m=0,可化為(x﹣1)2+(y﹣2)2=11,
圓心坐標(biāo)為(1,2),半徑為
(2)解:∵(x﹣1)2+(y﹣2)2=5﹣m,
∴圓心(1,2)到直線l:x+2y﹣4=0的距離d= ,
又圓(x﹣1)2+(y﹣2)2=5﹣m的半徑r= , ,
∴( )2+( )2=5﹣m,得m=4
【解析】(1)當(dāng)m=﹣6時,方程C:x2+y2﹣2x﹣4y+m=0,可化為(x﹣1)2+(y﹣2)2=11,即可求得圓心和半徑;(2)利用圓心(1,2)到直線l:x+2y﹣4=0的距離公式可求得圓心到直線距離d,利用圓的半徑、弦長之半、d構(gòu)成的直角三角形即可求得m的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m,n∈R,若直線(m+1)x+(n+1)y﹣2=0與圓(x﹣1)2+(y﹣1)2=1相切,則m+n的取值范圍是( )
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線l的斜率為k,它與拋物線y2=4x相交于A,B兩點,F(xiàn)為拋物線的焦點,若 ,則|k|=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ,g(x)=f2(x)﹣af(x)+2a有四個不同的零點x1 , x2 , x3 , x4 , 則[2﹣f(x1)][2﹣f(x2)][2﹣f(x3)][2﹣f(x4)]的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三角形△ABC的三邊長構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個三角形的周長為( )
A.15
B.18
C.21
D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義函數(shù) ,其中x為自變量,a為常數(shù). (I)若當(dāng)x∈[0,2]時,函數(shù)fa(x)的最小值為一1,求a之值;
(II)設(shè)全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某村投資128萬元建起了一處生態(tài)采摘園,預(yù)計在經(jīng)營過程中,第一年支出10萬元,以后每年支出都比上一年增加4萬元,從第一年起每年的銷售收入都為76萬元.設(shè)y表示前n(n∈N*)年的純利潤總和(利潤總和=經(jīng)營總收入﹣經(jīng)營總支出﹣投資).
(1)該生態(tài)園從第幾年開始盈利?
(2)該生態(tài)園前幾年的年平均利潤最大,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com