【題目】已知點(diǎn)在橢圓: 上, 是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱(chēng),直線(xiàn), 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線(xiàn)截得的弦長(zhǎng)是定值.
【答案】(Ⅰ).(Ⅱ)見(jiàn)解析.
【解析】試題分析:(Ⅰ)依題意,得到,利用定義得到,即可求解橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè), ,根據(jù)直線(xiàn)方程,求解的坐標(biāo),可得,利用 ,求得的值,即可得到弦長(zhǎng)為定值.
試題解析:
(Ⅰ)依題意,橢圓的另一個(gè)焦點(diǎn)為,且.
因?yàn)?/span>,
所以, ,
所以橢圓的方程為.
(Ⅱ)證明:由題意可知, 兩點(diǎn)與點(diǎn)不重合.
因?yàn)?/span>, 兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),
所以設(shè), , .
設(shè)以為直徑的圓與直線(xiàn)交于兩點(diǎn),
所以.
直線(xiàn): .
當(dāng)時(shí), ,所以.
直線(xiàn): .
當(dāng)時(shí), ,所以.
所以, ,
因?yàn)?/span>,所以,
所以.
因?yàn)?/span>,即, ,
所以,所以.
所以, , 所以.
所以以為直徑的圓被直線(xiàn)截得的弦長(zhǎng)是定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線(xiàn)與圓相交于不同的兩點(diǎn),點(diǎn)是線(xiàn)段的中點(diǎn)。
(1)求直線(xiàn)的方程;
(2)是否存在與直線(xiàn)平行的直線(xiàn),使得與與圓相交于不同的兩點(diǎn),不經(jīng)過(guò)點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求曲線(xiàn)在處的切線(xiàn)方程;
(2)當(dāng)時(shí),判斷 在上的單調(diào)性,并說(shuō)明理由;
(3)當(dāng)時(shí),求證: ,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓: 上, 是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱(chēng),直線(xiàn), 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線(xiàn)截得的弦長(zhǎng)是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】濟(jì)南新舊動(dòng)能轉(zhuǎn)換先行區(qū),承載著濟(jì)南從“大明湖時(shí)代”邁向“黃河時(shí)代”的夢(mèng)想,肩負(fù)著山東省新舊動(dòng)能轉(zhuǎn)換先行先試的重任,是全國(guó)新舊動(dòng)能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標(biāo),通過(guò)開(kāi)放平臺(tái)匯聚創(chuàng)新要素,堅(jiān)持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機(jī)器人制造企業(yè)有意落戶(hù)先行區(qū),對(duì)市場(chǎng)進(jìn)行了可行性分析,如果全年固定成本共需2000(萬(wàn)元),每年生產(chǎn)機(jī)器人(百個(gè)),需另投人成本(萬(wàn)元),且,由市場(chǎng)調(diào)研知,每個(gè)機(jī)器人售價(jià)6萬(wàn)元,且全年生產(chǎn)的機(jī)器人當(dāng)年能全部銷(xiāo)售完.
(1)求年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(百個(gè))的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額-成本)
(2)該企業(yè)決定:當(dāng)企業(yè)年最大利潤(rùn)超過(guò)2000(萬(wàn)元)時(shí),才選擇落戶(hù)新舊動(dòng)能轉(zhuǎn)換先行區(qū).請(qǐng)問(wèn)該企業(yè)能否落戶(hù)先行區(qū),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,且投資1萬(wàn)元時(shí)的收益為萬(wàn)元,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比,且投資1萬(wàn)元時(shí)的收益為0.5萬(wàn)元,
(1)分別寫(xiě)出兩種產(chǎn)品的收益與投資額的函數(shù)關(guān)系;
(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):怎樣分配資金能使投資獲得最大收益,其最大收益為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱(chēng)該學(xué)生的選考方案確定;否則,稱(chēng)該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過(guò)點(diǎn)的直線(xiàn)與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com