【題目】某公司在甲、乙兩地同時(shí)銷(xiāo)售一種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為L1=-x2+21xL2=2x,其中銷(xiāo)售量為x(單位:).若該公司在兩地共銷(xiāo)售15,則能獲得的最大利潤(rùn)為()

A. 90萬(wàn)元B. 120萬(wàn)元

C. 120.25萬(wàn)元D. 60萬(wàn)元

【答案】B

【解析】

本題考查的是二次函數(shù)的最值問(wèn)題,通過(guò)構(gòu)建函數(shù),分析二次函數(shù)的開(kāi)口、定義域的取值,,在應(yīng)用題中,需要結(jié)合實(shí)際情況,進(jìn)一步判斷函數(shù)的最值。

設(shè)該公司在甲地銷(xiāo)售x輛車(chē),則在乙地銷(xiāo)售(15-x)輛車(chē),根據(jù)題意,總利潤(rùn)y=-x2+21x+2(15-x)(0x15,xN),整理得y=-x2+19x+30.因?yàn)樵摵瘮?shù)圖象的對(duì)稱軸為x=,開(kāi)口向下,xN,所以當(dāng)x=9x=10時(shí),y取得最大值120萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,互不相同的點(diǎn)A1 , A2 , …,An , …和B1 , B2 , …,Bn , …分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAn=an , 若a1=1,a2=2,則數(shù)列{an}的通項(xiàng)公式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的值域?yàn)?/span>A,.

(1)當(dāng)的為偶函數(shù)時(shí),求的值;

(2) 當(dāng)時(shí), A上是單調(diào)遞增函數(shù),求的取值范圍;

(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取 得最小值,試探討應(yīng)該滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) , 是兩個(gè)非零向量.則下列命題為真命題的是(
A.若| + |=| |﹣| |,則
B.若 ,則| + |=| |﹣| |
C.若| + |=| |﹣| |,則存在實(shí)數(shù)λ,使得
D.若存在實(shí)數(shù)λ,使得 ,則| + |=| |﹣| |

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)判斷上的增減性,并證明你的結(jié)論

(2)解關(guān)于的不等式

(3)若上恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2 ,M,N分別為PB,PD的中點(diǎn).

(1)證明:MN∥平面ABCD;
(2)過(guò)點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A﹣MN﹣Q的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn

(1)求an及Sn;

(2)令bn(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)窮數(shù)列滿足:為正整數(shù),且對(duì)任意正整數(shù)為前項(xiàng)、、中等于的項(xiàng)的個(gè)數(shù).

1)若,求的值;

2)已知命題 存在正整數(shù),使得,判斷命題的真假并說(shuō)明理由;

3)若對(duì)任意正整數(shù),都有恒成立,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案