【題目】某公司在甲、乙兩地同時(shí)銷(xiāo)售一種品牌車(chē),利潤(rùn)(單位:萬(wàn)元)分別為L1=-x2+21x和L2=2x,其中銷(xiāo)售量為x(單位:輛).若該公司在兩地共銷(xiāo)售15輛,則能獲得的最大利潤(rùn)為()
A. 90萬(wàn)元B. 120萬(wàn)元
C. 120.25萬(wàn)元D. 60萬(wàn)元
【答案】B
【解析】
本題考查的是二次函數(shù)的最值問(wèn)題,通過(guò)構(gòu)建函數(shù),分析二次函數(shù)的開(kāi)口、定義域的取值,,在應(yīng)用題中,需要結(jié)合實(shí)際情況,進(jìn)一步判斷函數(shù)的最值。
設(shè)該公司在甲地銷(xiāo)售x輛車(chē),則在乙地銷(xiāo)售(15-x)輛車(chē),根據(jù)題意,總利潤(rùn)y=-x2+21x+2(15-x)(0≤x≤15,x∈N),整理得y=-x2+19x+30.因?yàn)樵摵瘮?shù)圖象的對(duì)稱軸為x=,開(kāi)口向下,又x∈N,所以當(dāng)x=9或x=10時(shí),y取得最大值120萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,互不相同的點(diǎn)A1 , A2 , …,An , …和B1 , B2 , …,Bn , …分別在角O的兩條邊上,所有AnBn相互平行,且所有梯形AnBnBn+1An+1的面積均相等,設(shè)OAn=an , 若a1=1,a2=2,則數(shù)列{an}的通項(xiàng)公式是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的值域?yàn)?/span>A,.
(1)當(dāng)的為偶函數(shù)時(shí),求的值;
(2) 當(dāng)時(shí), 在A上是單調(diào)遞增函數(shù),求的取值范圍;
(3)當(dāng)時(shí),(其中),若,且函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,在處取 得最小值,試探討應(yīng)該滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) , 是兩個(gè)非零向量.則下列命題為真命題的是( )
A.若| + |=| |﹣| |,則 ⊥
B.若 ⊥ ,則| + |=| |﹣| |
C.若| + |=| |﹣| |,則存在實(shí)數(shù)λ,使得 =λ
D.若存在實(shí)數(shù)λ,使得 =λ ,則| + |=| |﹣| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)判斷在上的增減性,并證明你的結(jié)論
(2)解關(guān)于的不等式
(3)若在上恒成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面是邊長(zhǎng)為 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2 ,M,N分別為PB,PD的中點(diǎn).
(1)證明:MN∥平面ABCD;
(2)過(guò)點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A﹣MN﹣Q的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若執(zhí)行下面的程序框圖,輸出的值為3,則判斷框中應(yīng)填入的條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=7,a5+a7=26,{an}的前n項(xiàng)和為Sn.
(1)求an及Sn;
(2)令bn=(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮數(shù)列滿足:為正整數(shù),且對(duì)任意正整數(shù),為前項(xiàng)、、、中等于的項(xiàng)的個(gè)數(shù).
(1)若,求和的值;
(2)已知命題 存在正整數(shù),使得,判斷命題的真假并說(shuō)明理由;
(3)若對(duì)任意正整數(shù),都有恒成立,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com