已知☉O1和☉O2的極坐標(biāo)方程分別是ρ=2cosθ和ρ=2asinθ(a是非零常數(shù)).

(1)將兩圓的極坐標(biāo)方程化為直角坐標(biāo)方程.

(2)若兩圓的圓心距為,a的值.

 

(1) x2+(y-a)2=a2. (2) ±2

【解析】(1)由ρ=2cosθ,得ρ2=2ρcosθ,

所以☉O1的直角坐標(biāo)方程為x2+y2=2x,

(x-1)2+y2=1.

由ρ=2asinθ,得ρ2=2aρsinθ.

所以☉O2的直角坐標(biāo)方程為x2+y2=2ay,

x2+(y-a)2=a2.

(2)O1與☉O2的圓心之間的距離為,解得a=±2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

若矩陣A有特征值λ1=2,λ2=-1,它們所對應(yīng)的特征向量分別為e1=e2=.

(1)求矩陣A.

(2)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:選擇題

若隨機(jī)變量X的分布列如表:E(X)=(  )

X

0

1

2

3

4

5

P

2x

3x

7x

2x

3x

x

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

在調(diào)查學(xué)生數(shù)學(xué)成績與物理成績之間的關(guān)系時(shí),得到如下數(shù)據(jù)(人數(shù)):

 

物理

成績好

物理

成績不好

合計(jì)

數(shù)學(xué)成績好

62

23

85

數(shù)學(xué)成績不好

28

22

50

合計(jì)

90

45

135

那么有把握認(rèn)為數(shù)學(xué)成績與物理成績之間有關(guān)的百分比為(  )

(A)25%  (B)75%  (C)95%  (D)99%

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

已知圓O1和圓O2的極坐標(biāo)方程分別為ρ=2,ρ2-2ρcos(θ-)=2.

(1)把圓O1和圓O2的極坐標(biāo)方程化為直角坐標(biāo)方程.

(2)求經(jīng)過兩圓交點(diǎn)的直線的極坐標(biāo)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設(shè)基本功(初賽)、面點(diǎn)制作(復(fù)賽)、熱菜烹制(決賽)三個(gè)輪次的比賽,已知某選手通過初賽、復(fù)賽、決賽的概率分別是,,且各輪次通過與否相互獨(dú)立.

(1)設(shè)該選手參賽的輪次為ξ,求ξ的分布列.

(2)對于(1)中的ξ,設(shè)“函數(shù)f(x)=3sinπ(xR)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)某項(xiàng)試驗(yàn)的成功率是失敗率的2,用隨機(jī)變量X去描述1次試驗(yàn)的成功次數(shù),P(X=0)等于(  )

(A)0 (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

,其中

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值;

2)當(dāng)時(shí),若恒成立,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

若不等式的解集為,則實(shí)數(shù)的值為 .

 

查看答案和解析>>

同步練習(xí)冊答案