(2012•四川)下列命題正確的是( 。
分析:利用直線與平面所成的角的定義,可排除A;利用面面平行的位置關(guān)系與點(diǎn)到平面的距離關(guān)系可排除B;利用線面平行的判定定理和性質(zhì)定理可判斷C正確;利用面面垂直的性質(zhì)可排除D
解答:解:A,若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行、相交或異面;排除A;
B,若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行或相交,排除B;
C,設(shè)平面α∩β=a,l∥α,l∥β,由線面平行的性質(zhì)定理,在平面α內(nèi)存在直線b∥l,在平面β內(nèi)存在直線c∥l,所以由平行公理知b∥c,從而由線面平行的判定定理可證明b∥β,進(jìn)而由線面平行的性質(zhì)定理證明得b∥a,從而l∥a;故C正確;
D,若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行或相交,排除D;
故選 C
點(diǎn)評(píng):本題主要考查了空間線面平行和垂直的位置關(guān)系,線面平行的判定和性質(zhì),面面垂直的性質(zhì)和判定,空間想象能力,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)設(shè)a,b為正實(shí)數(shù),現(xiàn)有下列命題:
①若a2-b2=1,則a-b<1;
②若
1
b
-
1
a
=1
,則a-b<1;
③若|
a
-
b
|=1
,則|a-b|<1;
④若|a3-b3|=1,則|a-b|<1.
其中的真命題有
①④
①④
.(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)設(shè)
a
、
b
都是非零向量,下列四個(gè)條件中,使
a
|
a
|
=
b
|
b
|
成立的充分條件是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)記[x]為不超過(guò)實(shí)數(shù)x的最大整數(shù),例如,[2]=2,[1.5]=1,[-0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿(mǎn)足x1=a,xn+1=[
xn+[
a
xn
]
2
](n∈N*)
,現(xiàn)有下列命題:
①當(dāng)a=5時(shí),數(shù)列{xn}的前3項(xiàng)依次為5,3,2;
②對(duì)數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時(shí)總有xn=xk;
③當(dāng)n≥1時(shí),xn
a
-1
;
④對(duì)某個(gè)正整數(shù)k,若xk+1≥xk,則xk=[
a
]

其中的真命題有
①③④
①③④
.(寫(xiě)出所有真命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2012·四川卷] 下列命題正確的是(  )

A.若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行

B.若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行

C.若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

D.若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行

查看答案和解析>>

同步練習(xí)冊(cè)答案