已知
垂直平行四邊形
所在平面,若
,則平行四邊形
一定是
(填形狀)
試題分析:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240031264281669.png" style="vertical-align:middle;" />,所以
,所以平行四邊形ABCD一定為菱形。
點(diǎn)評:對角線垂直的平行四邊形一定為菱形。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
是兩個(gè)不同的平面,
是兩條不同直線.①若
,則
②若
,則
③若
,則
④若
,則
以上命題正確的是
.(將正確命題的序號全部填上)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題12分)如圖,
平面
,點(diǎn)
在
上,
∥
,四邊形
為直角梯形,
,
,
(1)求證:
平面
;
(2)求二面角
的余弦值;
(3)直線
上是否存在點(diǎn)
,使
∥平面
,若存在,求出點(diǎn)
;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
表示兩條直線,
表示兩個(gè)平面,則下列命題是真命題的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=
,F是BC的中點(diǎn).
(Ⅰ)求證:DA⊥平面PAC;
(Ⅱ)點(diǎn)G為線段PD的中點(diǎn),證明CG∥平面PAF;
(Ⅲ)求三棱錐A—CDG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知平行六面體
ABCD-
A1B1C1D1中,∠
A1AD=∠
A1AB=∠
BAD=60°,
AA1=
AB=
AD=1,
E為
A1D1的中點(diǎn)。
給出下列四個(gè)命題:①∠
BCC1為異面直線
與
CC1所成的角;②三棱錐
A1-
ABD是正三棱錐;③
CE⊥平面
BB1D1D;④
;⑤|
|=
.其中正確的命題有_____________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在組合體中,ABCD—A
1B
1C
1D
1是一個(gè)長方體,P—ABCD是一個(gè)四棱錐.AB=2,BC=3,點(diǎn)P
平面CC
1D
1D,且PC=PD=
.
(1)證明:PD
平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若
,當(dāng)a為何值時(shí),PC//平面
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在平行四邊形
中,
于
,
,將
沿
折起,使
.
(1)求證:
平面
;
(2)求平面
和平面
夾角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)如圖所示,直三棱柱ABC—A
1B
1C
1中,CA=CB=1,∠BCA=90°,棱AA
1=2,M、N分別是A
1B
1、A
1A的中點(diǎn).
(1)求
的長; (2)求cos<
>的值; (3)求證:A
1B⊥C
1M.
查看答案和解析>>