如圖,在長方體ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中點(diǎn),E是棱AA1上任意一點(diǎn).
(1)證明:BD⊥EC1;
(2)如果AB=2,AE=,OE⊥EC1,求AA1的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在正方體ABCDA1B1C1D1中,E、F、G、H分別是BC、CC1、C1D1、A1A的中點(diǎn).求證:
(1)BF∥HD1;
(2)EG∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中點(diǎn),F是AB的中點(diǎn),AC=BC=1,AA1=2.
(1)求證:CF∥平面AB1E;
(2)求三棱錐C-AB1E在底面AB1E上的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,中,平面外一條線段AB滿足AB∥DE,AB,AB⊥AC,F(xiàn)是CD的中點(diǎn).
(1)求證:AF∥平面BCE
(2)若AC=AD,證明:AF⊥平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在三棱柱ABC A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.
(1)求證:平面A1BC⊥平面ACC1A1;
(2)如果D為AB的中點(diǎn),求證:BC1∥平面A1CD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱臺ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐中,底面為梯形,,,,平面平面,.
(1)求證:平面;
(2)求證:;
(3)是否存在點(diǎn),到四棱錐各頂點(diǎn)的距離都相等?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=.
(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求平面PAD與PBC所成銳二面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com