【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側(cè)的兩點.若直線過點,且,求直線的方程.
【答案】(1);(2)
【解析】試題分析:(1)由已知條件布列關(guān)于a,b的方程組,即可得到橢圓的方程;(2)因為,所以直線的斜率之和為0,設(shè)直線的斜率為,則直線的斜率為,聯(lián)立方程利用根與系數(shù)的關(guān)系,進而得到直線的方程.
試題解析:
解:(1)因為,所以,①
由四邊形的面積是四邊形的面積的2倍,
可得.②
由①可得,
所以,所以.
所以橢圓的方程為.
(2)由(1)易知點的坐標(biāo)分別為.
因為,所以直線的斜率之和為0.
設(shè)直線的斜率為,則直線的斜率為, ,
直線的方程為,由
可得,
∴,
同理直線的方程為,
可得,
∴,
,
∴滿足條件的直線的方程為,
即為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求實數(shù)m的值;
(2)用定義證明函數(shù)f(x)在區(qū)間(0,+∞)上為單調(diào)減函數(shù);
(3)若關(guān)于x的不等式f(x)+a<0對區(qū)間[1,3]上的任意實數(shù)x都成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某個年級有男生560人,女生420人,用分層抽樣的方法從該年級全體學(xué)生中抽取一個容量為280的樣本,則此樣本中男生人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1=2an﹣1(n∈N+),a1=2.
(1)求證:數(shù)列{an﹣1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}的前n項和Sn(n∈N+).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圓,求實數(shù)m的范圍;
(2)在方程表示圓時,該圓與直線l:x+2y﹣4=0相交于M、N兩點, ,求m的值;
(3)在(2)的條件下,定點A(1,0),P在線段MN上運動,求直線AP的斜率取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com