設(shè)橢圓的焦點(diǎn)分別為,直線軸于點(diǎn),且.
(1)試求橢圓的方程;
(2)過、分別作互相垂直的兩直線與橢圓分別交于、、、四點(diǎn)(如圖所示),試求四邊形面積的最大值和最小值.
(1)
(2)最大值是4,最小值是
(1)由題意,
 的中點(diǎn)    
    
即:橢圓方程為……………(4分)
(2)當(dāng)直線軸垂直時(shí),,此時(shí),四邊形的面積.同理當(dāng)軸垂直時(shí),也有四邊形的面積.…………………………………………6分
當(dāng)直線,均與軸不垂直時(shí),設(shè):,代入消去得: 設(shè)
所以,, 所以,
,同理
所以四邊形的面積………………………………10分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132755891550.gif" style="vertical-align:middle;" />當(dāng)
且S是以u為自變量的增函數(shù),所以
所以面積最大值是4.最小值是…………………………………………12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,.過的直線交橢圓于兩點(diǎn),過的直線交橢圓于兩點(diǎn),且,垂足為
(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,證明:;
(Ⅱ)求四邊形的面積的最小值.
 
 
 
 
 
 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量,經(jīng)過定點(diǎn)且方向向量為的直線與經(jīng)過定點(diǎn)且方向向量為的直線交于點(diǎn)M,其中R,常數(shù)a>0.
(1)求點(diǎn)M的軌跡方程;
(2)若,過點(diǎn)的直線與點(diǎn)M的軌跡交于C、D兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓上一點(diǎn)到直線與到點(diǎn)(-2,0)的距離之比為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,
(1)求斜率為2的平行弦的中點(diǎn)軌跡方程。
(2)過A(2,1)的直線L與橢圓相交,求L被截得的弦的中點(diǎn)軌跡方程;
(3)過點(diǎn)P(0.5,0.5)且被P點(diǎn)平分的弦所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)直線經(jīng)過點(diǎn),且與軸交于
點(diǎn)F(2,0)。
(I)求直線的方程;
(II)如果一個(gè)橢圓經(jīng)過點(diǎn)P,且以點(diǎn)F為它的一個(gè)焦點(diǎn),求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若△ABC的兩個(gè)頂點(diǎn)坐標(biāo)A(-4,0)、B(4,0),△ABC的周長(zhǎng)為18,則頂點(diǎn)C的軌跡方程為(    )
A.+="1"B.+=1(y≠0)
C.+=1(y≠0)D.+=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)P(x,y)是+=1上一點(diǎn),則x+y的最小值為__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓方程為=1(a>b>0),短軸的一個(gè)頂點(diǎn)B與兩焦點(diǎn)F1、F2組成的三角形的周長(zhǎng)為4+2,且∠F1BF2=,求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案