①求函數(shù)y=
3x-1
|x+1|+|x-1|
的定義域;
②求函數(shù)y=x+
1-2x
的值域;
③求函數(shù)y=
2x2-2x+3
x2-x+1
的值域.
分析:①函數(shù)是一個(gè)分式函數(shù),分母不為零即可,考查分母即可得出定義域;
②由于函數(shù)是一個(gè)根式函數(shù),可令
1-2x
=t
進(jìn)行換元,將根式函數(shù)變?yōu)槎魏瘮?shù),利用二次函數(shù)性質(zhì)求值域;
③由函數(shù)的形式,可等式兩邊同乘以分母,將函數(shù)值y看作常數(shù),由此可轉(zhuǎn)化出一元二次方程,此方程有根,其判別式大于等于0,由此即可得到關(guān)于y的不等式,解不等式即可得到函數(shù)的值域.
解答:解:①.因?yàn)閨x+1|+|x-1|的函數(shù)值一定大于0,且x-1無(wú)論取什么數(shù)三次方根一定有意義,故其值域?yàn)镽;
②.令
1-2x
=t
,t≥0,x=
1
2
(1-t2)
,原式等于
1
2
(1-t2)+t=-
1
2
(t-1)2+1
,故y≤1.
③.把原式化為以x為未知數(shù)的方程(y-2)x2-(y-2)x+y-3=0,
當(dāng)y≠2時(shí),△=(y-2)2-4(y-2)(y-3)≥0,得2<y≤
10
3
;
當(dāng)y=2時(shí),方程無(wú)解;所以函數(shù)的值域?yàn)?span id="qvy2mui" class="MathJye">(2,
10
3
].
點(diǎn)評(píng):本題考查函數(shù)的定義域與值域,解答的關(guān)鍵是掌握住定義域時(shí)常用的一些限制條件如分母不為零、偶次根號(hào)下非負(fù)等,第二小題求值域用到了換元法,將求函數(shù)值域的問(wèn)題轉(zhuǎn)化為常見(jiàn)函數(shù)的值域,降低了題目難度,第三題用到了判別式法求值域,這是二次型分式常用的求值域的技巧,要注意總結(jié)其使用的規(guī)則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)y=
3x-1
|x+1|+|x-1|
的定義域;
(2)求函數(shù)y=x+
1-2x
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=3
x-1
的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=3
x-1
+4
5-x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

①求函數(shù)y=
3x-1
|x+1|+|x-1|
的定義域;
②求函數(shù)y=x+
1-2x
的值域;
③求函數(shù)y=
2x2-2x+3
x2-x+1
的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案