【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log x.
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

【答案】
(1)解:當(dāng)x<0時(shí),-x>0,則f(-x)=

因?yàn)楹瘮?shù)f(x)是奇函數(shù),所以f(-x)=- f(x).

因此當(dāng)x<0時(shí), f(x)=-

當(dāng)x=0時(shí),f(0)=0

所以函數(shù)f(x)的解析式為


(2)解:不等式f(x2-1)>-2可化為,

當(dāng) 時(shí), ,解得 ;

當(dāng) 時(shí), ,滿足條件;

當(dāng) 時(shí), ,解得 .

所以,

解得

即不等式的解集為


【解析】(1)利用奇函數(shù)的定義得出f(-x)=- f(x),再由已知條件得出當(dāng)x<0時(shí) f(x)=- log ( - x )的解析式,再由f(0)=0得出f(x) 的解析式即可。(2)根據(jù)對(duì)數(shù)的單調(diào)性,對(duì)x2 1的范圍進(jìn)行討論得出不同區(qū)間下的x的取值范圍把三種情況的結(jié)果并起來即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市春節(jié)7家超市的廣告費(fèi)支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,

超市

A

B

C

D

E

F

G

廣告費(fèi)支出x

1

2

4

6

11

13

19

銷售額y

19

32

40

44

52

53

54


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程; = x+
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程: =﹣0.17x2+5x+20. 經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為3萬元時(shí)的銷售額,
參考數(shù)據(jù)及公式: =8, =42. xiyi=2794, x =708,
= = = x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的奇函數(shù)f(x)滿足f(x﹣2)=f(x+2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=3x﹣1,則f(9)=(
A.﹣2
B.2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(Ⅰ)當(dāng)時(shí),若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍;

(Ⅱ)對(duì)任意時(shí)不等式恒成立,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,函數(shù) (a>0),若存在 ,使得 成立,則實(shí)數(shù) 的取值范圍是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市出租車的收費(fèi)標(biāo)準(zhǔn)是:3千米以內(nèi)(含3千米),收起步價(jià)8元;3千米以上至8千米以內(nèi)(含8千米),超出3千米的部分按元/千米收取;8千米以上,超出8千米的部分按2元/千米收取.

(1)計(jì)算某乘客搭乘出租車行駛7千米時(shí)應(yīng)付的車費(fèi);

(2)試寫出車費(fèi) (元)與里程 (千米)之間的函數(shù)解析式并畫出圖像;

(3)小陳周末外出,行程為10千米,他設(shè)計(jì)了兩種方案:

方案1:分兩段乘車,先乘一輛行駛5千米,下車換乘另一輛車再行5千米至目的地

方案2:只乘一輛車至目的地,試問:以上哪種方案更省錢,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱與四棱錐的組合體中,已知平面,四邊形是平行四邊形, , ,設(shè)是線段中點(diǎn).

(1)求證: 平面;

(2)證明:平面平面

(3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖(如圖所示):

若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認(rèn)為城市擁堵與認(rèn)可共享單車有關(guān):

合計(jì)

認(rèn)可

不認(rèn)可

合計(jì)

附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若函數(shù)F(x)= +ax2 上為減函數(shù),求 的取值范圍;
(2)當(dāng) 時(shí), ,當(dāng) 時(shí),方程 - =0有兩個(gè)不等的實(shí)根,求實(shí)數(shù) 的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案