【題目】已知橢圓的左、右焦點(diǎn)分別為,點(diǎn)是橢圓上任意一點(diǎn),的最小值為,且該橢圓的離心率為.

1)求橢圓的方程;

2)若是橢圓上不同的兩點(diǎn),且,若,試問(wèn)直線(xiàn)是否經(jīng)過(guò)一個(gè)定點(diǎn)?若經(jīng)過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不經(jīng)過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】(1)(2)直線(xiàn)過(guò)定點(diǎn)

【解析】

1)依題意得到方程組解得;

(2)已知,可知點(diǎn)同在軸的上方或下方,

由對(duì)稱(chēng)性可知,若動(dòng)直線(xiàn)經(jīng)過(guò)一個(gè)定點(diǎn),則該定點(diǎn)在軸上,因?yàn)?/span>,所以點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上,

設(shè)直線(xiàn)的方程為,則直線(xiàn)的方程為,聯(lián)立直線(xiàn)與橢圓方程,列出韋達(dá)定理,由直線(xiàn)的斜率,得直線(xiàn)的方程為,令,計(jì)算其橫坐標(biāo)是否為定值.

解:(1)依題意得,解得,所以橢圓;

2)直線(xiàn)過(guò)定點(diǎn),

證明:已知,可知點(diǎn)同在軸的上方或下方,

由對(duì)稱(chēng)性可知,若動(dòng)直線(xiàn)經(jīng)過(guò)一個(gè)定點(diǎn),則該定點(diǎn)在軸上,

因?yàn)?/span>,所以點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)在直線(xiàn)上,

設(shè)直線(xiàn)的方程為,則直線(xiàn)的方程為

聯(lián)立,消去整理得

所以,

由直線(xiàn)的斜率,得直線(xiàn)的方程為,

,得:,

,

所以

,

所以直線(xiàn)過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是為參數(shù)),把曲線(xiàn)橫坐標(biāo)縮短為原來(lái)的,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線(xiàn),直線(xiàn)的普通方程是,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系;

(1)求直線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的普通方程;

(2)記射線(xiàn)交于點(diǎn),與交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】非空有限集合是由若干個(gè)正實(shí)數(shù)組成,集合的元素個(gè)數(shù).對(duì)于任意,數(shù)中至少有一個(gè)屬于,稱(chēng)集合好集”:否則,稱(chēng)集合壞集”.

1)判斷好集”,還是壞集

2)題設(shè)的有限集合,既有大于1的元素,又有小于1的元素,證明:集合壞集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為研究女高中生身高與體重之間的關(guān)系,一調(diào)查機(jī)構(gòu)從某中學(xué)中隨機(jī)選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

164

160

158

172

162

164

174

166

體重

60

46

43

48

48

50

61

52

該調(diào)查機(jī)構(gòu)繪制出該組數(shù)據(jù)的散點(diǎn)圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系.

1)調(diào)查員甲計(jì)算得出該組數(shù)據(jù)的線(xiàn)性回歸方程為,請(qǐng)你據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

2)調(diào)查員乙仔細(xì)觀察散點(diǎn)圖發(fā)現(xiàn),這8名同學(xué)中,編號(hào)為14的兩名同學(xué)對(duì)應(yīng)的點(diǎn)與其他同學(xué)對(duì)應(yīng)的點(diǎn)偏差太大,于是提出這樣的數(shù)據(jù)應(yīng)剔除,請(qǐng)你按照這名調(diào)查人員的想法重新計(jì)算線(xiàn)性回歸話(huà)中,并據(jù)此預(yù)報(bào)一名身高為的女高中生的體重;

3)請(qǐng)你分析一下,甲和乙誰(shuí)的模型得到的預(yù)測(cè)值更可靠?說(shuō)明理由.

附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計(jì)分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的左、右焦點(diǎn)分別為,實(shí)軸長(zhǎng)為4,漸近線(xiàn)方程為,點(diǎn)N在圓上,則的最小值為( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國(guó)居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國(guó)居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說(shuō)法:

①2018年全年全國(guó)居民人均可支配收入的平均數(shù)的增長(zhǎng)率低于2017年;

②2018年全年全國(guó)居民人均可支配收入的中位數(shù)約是平均數(shù)的;

③2018年全年全國(guó)居民衣(衣著)食(食品煙酒)住(居。┬校ń煌ㄍㄐ牛┑闹С龀^(guò)人均消費(fèi)的.

則上述說(shuō)法中,正確的個(gè)數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直平行六面體的所有棱長(zhǎng)都為2,,過(guò)體對(duì)角線(xiàn)的截面S與棱分別交于點(diǎn)EF,給出下列命題中:

①四邊形的面積最小值為;

②直線(xiàn)EF與平面所成角的最大值為;

③四棱錐的體積為定值;

④點(diǎn)到截面S的距離的最小值為.

其中,所有真命題的序號(hào)為(

A.①②③B.①③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)環(huán)保建設(shè),提高社會(huì)效益和經(jīng)濟(jì)效益,某市計(jì)劃用若干年時(shí)間更換一萬(wàn)輛燃油型公交車(chē).每更換一輛新車(chē),則淘汰一輛舊車(chē),更換的新車(chē)為電力型車(chē)和混合動(dòng)力型車(chē).今年初投入了電力型公交車(chē)120輛,混合動(dòng)力型公交車(chē)300輛,計(jì)劃以后電力型車(chē)每年的投入量比上一年增加,混合動(dòng)力型車(chē)每年比上一年多投入.設(shè),分別為第年投入的電力型公交車(chē),混合動(dòng)力型公交車(chē)的數(shù)量,設(shè),分別為年里投入的電力型公交車(chē),混合動(dòng)力型公交車(chē)的總數(shù)量.

1)求,,并求年里投入的所有新公交車(chē)的總數(shù)

2)該市計(jì)劃用8年的時(shí)間完成全部更換,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案