如圖,在四棱錐PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.
(1)當正視方向與向量的方向相同時,畫出四棱錐PABCD的正視圖(要求標出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:DM∥平面PBC;
(3)求三棱錐DPBC的體積.
(1)見解析 (2)見解析 (3)8
解析解:(1)在梯形ABCD中,過點C作CE⊥AB,垂足為E.
由已知得,四邊形ADCE為矩形,
AE=CD=3,
在Rt△BEC中,
由BC=5,CE=4,
依勾股定理得
BE=3,
從而AB=6.
又由PD⊥平面ABCD,
得PD⊥AD,
從而在Rt△PDA中,
由AD=4,∠PAD=60°,
得PD=4.
正視圖如圖所示.
(2)取PB中點N,
連接MN,CN.
在△PAB中,
∵M是PA中點,
∴MN∥AB,MN=AB=3,
又CD∥AB,CD=3,
∴MN∥CD,MN=CD,
∴四邊形MNCD為平行四邊形,
∴DM∥CN.
又DM平面PBC,
CN?平面PBC,
∴DM∥平面PBC.
(3)==S△DBC·PD,
又S△DBC=6,PD=4,
所以=8.
科目:高中數學 來源: 題型:解答題
在如圖所示的幾何體中,四邊形為正方形,四邊形為等腰梯形,,,,.
(1)求證:平面;
(2)求四面體的體積;
(3)線段上是否存在點,使平面?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,△ABC內接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,
(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數的解析式及最大值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在△ABC中,∠BAC=90°,∠B=60°,AB=1,D為線段BC的中點,E、F為線段AC的三等分點(如圖①).將△ABD沿著AD折起到△AB′D的位置,連結B′C(如圖②).
圖①
圖②
(1)若平面AB′D⊥平面ADC,求三棱錐B′-ADC的體積;
(2)記線段B′C的中點為H,平面B′ED與平面HFD的交線為l,求證:HF∥l;
(3)求證:AD⊥B′E.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1=.
(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內放一個半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時容器中水的深度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com