【題目】如圖,幾何體中,為邊長(zhǎng)為2的正方形,為直角梯形,,,,,.
(1)求證:;
(2)求二面角的大小.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)證明:由題意得,平面,
又平面,再由勾股定理得
平面;(2)以為原點(diǎn),,,所在直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量,平面的法向量為 .
試題解析: (1)證明:由題意得,,,,
∴平面,∴,
∵四邊形為正方形,∴,
由,
∴平面,∴,
又∵四邊形為直角梯形,,,,,
∴,,則有,∴,
由,∴平面.
(2)由(1)知,,所在的直線相互垂直,故以為原點(diǎn),,,所在直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系,
可得,,,,,,
由(1)知平面的法向量為,
∴,,
設(shè)平面的法向量為,
則有即即
令,則,
設(shè)二面角的大小為,
,
∵,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司新發(fā)明了甲、乙兩種不同型號(hào)的手機(jī),公司統(tǒng)計(jì)了消費(fèi)者對(duì)這兩種型號(hào)手機(jī)的評(píng)分情況,作出如下的雷達(dá)圖,則下列說法不正確的是( )
A. 甲型號(hào)手機(jī)在外觀方面比較好.B. 甲、乙兩型號(hào)的系統(tǒng)評(píng)分相同.
C. 甲型號(hào)手機(jī)在性能方面比較好.D. 乙型號(hào)手機(jī)在拍照方面比較好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,等邊三角形所在的平面垂直于底面,, ,是棱的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)判斷直線與平面的是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù)f(x)對(duì)x∈R均有f(x)+2f(﹣x)=mx﹣6,若f(x)≥lnx恒成立,則實(shí)數(shù)m的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解家長(zhǎng)對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長(zhǎng)的滿意度評(píng)分,其頻數(shù)分布表如下:
滿意度評(píng)分分組 | 合計(jì) | |||||
高一 | 1 | 3 | 6 | 6 | 4 | 20 |
高二 | 2 | 6 | 5 | 5 | 2 | 20 |
根據(jù)評(píng)分,將家長(zhǎng)的滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 評(píng)分70分 | 70評(píng)分90 | 評(píng)分90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
假設(shè)兩個(gè)年級(jí)家長(zhǎng)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長(zhǎng),記事件:“高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)”,則事件發(fā)生的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國(guó),也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國(guó)各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會(huì)針對(duì)居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.
(1)求得分在上的頻率;
(2)求社區(qū)居民問卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(3)由于部分居民認(rèn)為此項(xiàng)學(xué)習(xí)不具有必要性,社區(qū)委員會(huì)對(duì)社區(qū)居民的學(xué)習(xí)態(tài)度作調(diào)查,所得結(jié)果統(tǒng)計(jì)如下:(表中數(shù)據(jù)單位:人)
認(rèn)為此項(xiàng)學(xué)習(xí)十分必要 | 認(rèn)為此項(xiàng)學(xué)習(xí)不必要 | |
50歲以上 | 400 | 600 |
50歲及50歲以下 | 800 | 200 |
根據(jù)上述數(shù)據(jù),計(jì)算是否有的把握認(rèn)為居民的學(xué)習(xí)態(tài)度與年齡相關(guān).
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com