已知,,,…….根據(jù)以上等式,可猜想出的一般結(jié)論是________;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

設(shè)P是△ABC內(nèi)任意一點(diǎn),S△ABC表示△ABC的面積,,定義f(P)=(λ1,λ2,λ3),若G是△ABC的重心,,則

[  ]

A.

點(diǎn)Q在△GAB內(nèi)

B.

點(diǎn)Q在△GBC

C.

點(diǎn)Q在△GCA

D.

點(diǎn)Q與點(diǎn)G重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

已知直線l:Ax+By+C=0(A,B不全為0),兩點(diǎn)P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)·(Ax2+By2+C)>0,|Ax1+By1+C|>|Ax2+By2+c|,則

[  ]

A.

直線l與直線P1P2不相交

B.

直線l與線段P2P1的延長(zhǎng)線相交

C.

直線l與線段P1P2的延長(zhǎng)線相交

D.

直線l與線段P1P2相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,則下列命題:

(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;

(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項(xiàng)均為正數(shù);

(3)若{an}是等差數(shù)列(公差d≠0),則S1·S2……Sk=0的充要條件是a1·a2……ak=0.

(4)若{an}是等比數(shù)列,則S1·S2……Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.

其中,正確命題的個(gè)數(shù)是

[  ]

A.

0個(gè)

B.

1個(gè)

C.

2個(gè)

D.

3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

若雙曲線x2-y2=a2(a>0)的左、右頂點(diǎn)分別為A、B,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn).若直線PA、PB的傾斜角分別為α,β,且β=mα(m>1),那么α的值是

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

給定橢圓C:=1(a>b>0).稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為F(,0),其短軸上的一個(gè)端點(diǎn)到F的距離為

(Ⅰ)求橢圓C的方程和其“準(zhǔn)圓”方程;

(Ⅱ)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過動(dòng)點(diǎn)P作直線l1l2,使得l1l2與橢圓C都只有一個(gè)交點(diǎn),試判斷l1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表

根據(jù)上表可得回歸方程x+中的為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為

[  ]

A.

63.6萬元

B.

65.5萬元

C.

67.7萬元

D.

72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖給出了一個(gè)程序框圖,其作用是輸入x的值,輸出相應(yīng)的y值.若要使輸入的x值與輸出的y值相等,則這樣的x值有(  )個(gè).

[  ]

A.

1

B.

2

C.

3

D.

4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:課標(biāo)綜合版 專題復(fù)習(xí) 題型:

如圖,過半徑為4的⊙O上的一點(diǎn)A引半徑為3的⊙的切線,切點(diǎn)為B,若⊙O與⊙內(nèi)切于點(diǎn)M,連接AM與⊙交于c點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案