【題目】已知條件p:-1≤x≤10,q:x2-4x+4-m2≤0(m>0)不變,若 p是 q的必要而不充分條件,如何求實數(shù)m的取值范圍?
【答案】【解答】p:-1≤x≤10.
q:x2-4x+4-m2≤0
[x-(2-m)][x-(2+m)]≤0(m>0)
2-m≤x≤2+m(m>0).
因為 p是 q的必要而不充分條件,
所以p是q的充分不必要條件,
即{x|-1≤x≤10} {x|2-m≤x≤2+m},
故有或 解得m≥8.所以實數(shù)m的范圍為{m|m≥8}.
【解析】對于結(jié)論中含有參數(shù)問題,可先將其轉(zhuǎn)化為最簡形式,利用充分條件、必要條件或充要條件揭示命題和結(jié)論之間的從屬關(guān)系,借助于Venn圖或數(shù)軸的直觀性列方程或不等式,即可求出參數(shù)的值或取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)=ax3+bx2+cx的極小值為﹣8,其導函數(shù)y=f′(x)的圖象經(jīng)過點 ,如圖所示,
(1)求f(x)的解析式;
(2)若對x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x)定義域中任意的x1 , x2(x1≠x2)有如下結(jié)論
1)f(x1+x2)=f(x1)f(x2)
2)f(x1x2)=f(x1)+f(x2)
3) >0
4)f( )<
5)f( )>
6)f(﹣x)=f(x).
當f(x)=lgx時,上述結(jié)論正確的序號為 . (注:把你認為正確的命題的序號都填上).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在(﹣1,1)上的減函數(shù)f(x)且滿足對任意的實數(shù)x,y都有f(x+y)=f(x)+f(y)
(Ⅰ)判斷函數(shù)f(x)的奇偶性;
(Ⅱ)解關(guān)于x的不等式f(log2x﹣1)+f(log2x)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列語句:
① 是無限循環(huán)小數(shù);②x2-3x+2=0;③當x=4時,2x>0;
④垂直于同一條直線的兩條直線必平行嗎?⑤一個數(shù)不是合數(shù)就是質(zhì)數(shù);
⑥作△ABC≌△A'B'C';⑦二次函數(shù)的圖像太美了!
⑧4是集合{1,2,3}中的元素.
其中不是命題的有,是真命題的有.(只填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x﹣2)=f(x+2)且當x∈[﹣2,0]時,f(x)=( )x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個不同的實數(shù)根,則a的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com