【題目】設(shè)函數(shù)若函數(shù)的圖象與軸相鄰兩個交點間的距離為,且圖像的一條對稱軸是直線

1)求的值;

2)求函數(shù)的單調(diào)增區(qū)間;

3)畫出函數(shù)在區(qū)間上的圖像。

【答案】1(2)(3)見解析

【解析】

試題分析:(1)由圖象與x軸的任意兩個相鄰交點間的距離為,可得出函數(shù)的周期,再由對稱軸是直線可求出值;

(2)由(1)的出的函數(shù)解析式,可運用正弦函數(shù)的單調(diào)性,解不等式可求函數(shù)的單調(diào)增區(qū)間;

(3)由函數(shù)解析式,可運用五點作圖法,注意所要求的區(qū)間,

可通過列表(關(guān)鍵點),描點,連線得出函數(shù)圖像。

試題解析:(1)函數(shù)的圖象與軸的兩個相鄰交點間的距離為,

,又函數(shù)圖像的一條對稱軸是直線

(2)由(1)可知

得:

所以函數(shù)的單調(diào)增區(qū)間是;

3

X

y

、

所以函數(shù)在區(qū)間上的圖像為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自新冠肺炎疫情爆發(fā)后,各省紛紛派出醫(yī)療隊支援湖北,全國上下凝聚一心,眾志成城,終于取得抗疫勝利!小亮、小紅、小金聽聞支援湖北的“英雄”即將歸來,各自獨立完成一幅十字繡贈送給當(dāng)?shù)氐尼t(yī)院,這三幅十字繡分別命名為“醫(yī)者仁心”、“最美逆行者”、“德醫(yī)雙馨”,為了弄清作品都是誰制作的,院長對三人進(jìn)行了問話,得到回復(fù)如下:小亮說:“最美逆行者”是我制作的;小紅說:“醫(yī)者仁心”不是小亮制作的,就是我制作的;小金說:“德醫(yī)雙馨”不是我制作的,若三人的說法有且僅有一人是正確的.通過以上信息判斷,“最美逆行者”的制作者應(yīng)該是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,對一切正整數(shù),點都在函數(shù)的圖象上,記的等差中項為。

)求數(shù)列的通項公式;

)若,求數(shù)列的前項和;

)設(shè)集合,等差數(shù)列的任意一項,其中中的最小數(shù),且,求的通項公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地干旱少雨,農(nóng)作物受災(zāi)嚴(yán)重,為了使今后保證農(nóng)田灌溉,當(dāng)?shù)卣疀Q定建一橫斷面為等腰梯形的水渠(水渠的橫斷面如圖所示),為減少水的流失量,必須減少水與渠壁的接觸面,若水渠橫斷面的面積設(shè)計為定值S,渠深為h,則水渠壁的傾斜角α(0<α)為多大時,水渠中水的流失量最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家擬在2016 年舉行促銷活動,經(jīng)調(diào)查測算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬件與年促銷費用萬元()滿足為常數(shù)),如果不搞促銷活動,則該產(chǎn)品的年銷售只能是萬件.已知2016 年生產(chǎn)該產(chǎn)品的固定投入為萬元.每生產(chǎn)萬件該產(chǎn)品需要再投入 萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金)

(1)將2016 年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);

(2)該廠家2016 年的促銷費用投入多少萬元時,廠家的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間的關(guān)系,下表記錄了小李某月連續(xù)5天每天打籃球時間(單位:小時)與當(dāng)天投籃命中率之間的關(guān)系:

時間

1

2

3

4

5

命中率

0.4

0.5

0.6

0.6

0.4

)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出投籃命中率與打籃球時間(單位:小時)之間的回歸直線方程;

)如果小李某天打了2.5小時籃球,預(yù)測小李當(dāng)天的投籃命中率.

(參考:用最小二乘法求線性回歸方程系數(shù)公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線交于、兩點,且OA·OB=2,其中為原點.

(1)求拋物線的方程;

(2)點坐標(biāo)為,記直線、的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某大學(xué)一年級女生中,選取身高分別是150cm、155cm、160cm165cm170cm的學(xué)生各一名,其身高和體重數(shù)據(jù)如表所示:

身高/cm

150

155

160

165

170

體重/kg

43

46

49

51

56

1關(guān)于的線性回歸方程;

2利用1中的回歸方程,計算身高為168cm時,體重的估計值為多少?

參考公式:線性回歸方程,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系中, 已知分別是橢圓的左、右焦點分別是橢圓的左、右頂點,為線段的中點, .

(1)求橢圓的方程;

(2)若為橢圓上的動點(異于點),連接并延長交橢圓于點,連接并分別延

長交橢圓于點連接,設(shè)直線的斜率存在且分別為、,試問是否存在常數(shù),使

恒成立?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案