(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求在上的最大和最小值.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)若函數(shù)在的單調遞減區(qū)間(—∞,2],求函數(shù)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在在單區(qū)間(—∞,2]上是單調遞減,求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某同學利用暑假時間到一家商場勤工儉學,該商場向他提供了三種付款方式:第一種,每天支付38圓;第二種,第一天付4元,第二天付8元,第三天付12元,以此類推:第三種,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你會選擇哪種方式領取報酬呢?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)在處取得極值,且在點處的切線與直線平行.
(1)求的解析式; (2)求函數(shù)的單調遞增區(qū)間及極值;
(3)求函數(shù)在的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的最大值和最小值;
(2)求實數(shù)的取值范圍,使在區(qū)間上是單調函數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比.已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資額的函數(shù)關系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
某公司生產(chǎn)一種電了儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):
,其中是儀器的月產(chǎn)量。
⑴將利潤表示為月產(chǎn)量的函數(shù)。
⑵當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?(總收益―總成本=利潤)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)定義域為,若對于任意的,,都有,且>0時,有>0.
⑴證明: 為奇函數(shù);
⑵證明: 在上為單調遞增函數(shù);
⑶設=1,若<,對所有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com