如圖,向高為H的圓柱形空水杯里注水,則下列表示注水量y與水深x的關(guān)系的圖象是
[ ]
A.
B.
C.
D.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
,,,的中點,O
1,O
1′,O
2,O
2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O
1′,A′,O
2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O
1′到H′,使得O
1′H′=A′O
1′.證明:BO
2′⊥平面H′B′G
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為
,
,
,
的中點,
O1,,O2,分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長
A′到H′,使得
H′=A′.證明:
B⊥平面H′B′G′.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為
|
CD |
,
|
C′D′ |
,
|
DE |
,
|
D′E′ |
的中點,
O1,,O2,分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長
A′到H′,使得
H′=A′.證明:
B⊥平面H′B′G′.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
的中點,O
1,O
1′,O
2,O
2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O
1′,A′,O
2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O
1′到H′,使得O
1′H′=A′O
1′.證明:BO
2′⊥平面H′B′G
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版)
題型:解答題
如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
的中點,O
1,O
1′,O
2,O
2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O
1′,A′,O
2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O
1′到H′,使得O
1′H′=A′O
1′.證明:BO
2′⊥平面H′B′G
查看答案和解析>>