如圖,向高為H的圓柱形空水杯里注水,則下列表示注水量y與水深x的關(guān)系的圖象是

[  ]
A.

B.

C.

D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為
CD
,
C′D′
,
DE
,
D′E′
的中點,O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O1′,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為
CD
CD
,
DE
DE
的中點,O1,
O
1
,O2,
O
2
分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
O
1
,A,O2,B
四點共面;
(2)設(shè)G為A A′中點,延長A
O
1
到H′,使得
O
1
H=A
O
1
.證明:B
O
2
⊥平面HBG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的集合體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的.A,A′,B,B′分別為








CD
,








CD
,








DE
,








DE
的中點,O1,
O′1
,O2,
O′2
分別為CD,C′D′,DE,D′E′的中點.
(1)證明:
O′1
A,O2,B
四點共面;
(2)設(shè)G為A A′中點,延長A
O′1
到H′,使得
O′1
H=A
O′1
.證明:B
O′2
⊥平面HBG
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點,O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O1′,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽市揭東縣云路中學(xué)高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點,O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點.
(1)證明:O1′,A′,O2,B四點共面;
(2)設(shè)G為A A′中點,延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

同步練習(xí)冊答案