【題目】(本小題滿分12分)已知數(shù)列{an}是等差數(shù)列,且a1,a2(a1<a2)分別為方程x2﹣6x+5=0的二根.

(1)求數(shù)列{an}的前n項(xiàng)和Sn;

(2)在(1)中,設(shè)bn=,求證:當(dāng)c=﹣時(shí),數(shù)列{bn}是等差數(shù)列.

【答案】(1),(2)略

【解析】試題分析:解一元二次方程得出,有公差,寫出等差數(shù)列的前項(xiàng)和,寫出,代入,證明數(shù)列{bn}是等差數(shù)列,只需證明為一個(gè)常數(shù).

試題解析:

(1)解方程x2﹣6x+5=0得其二根分別為1和5,

∵a1,a2(a1<a2)分別為方程x2﹣6x+5=0的二根

∴以a1=1,a2=5,

∴{an}等差數(shù)列的公差為4,

=2n2﹣n;

(2)證明:當(dāng)時(shí), =

∴bn+1﹣bn=2(n+1)﹣2n=2,

∴{bn}是以2為首項(xiàng),公差為2的等差數(shù)列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為, 為該橢圓的右焦點(diǎn),過點(diǎn)任作一直線交橢圓于兩點(diǎn),且的最大值為4.

(1)求橢圓的方程;

(2)設(shè)橢圓的左頂點(diǎn)為,若直線分別交直線兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式-2<|x-1|-|x+2|<0的解集為M ,a,b∈M .

(Ⅰ)證明:||<;

(Ⅱ)比較|1-4ab|與2|a-b|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是 ,則當(dāng)0≤t≤12時(shí),動點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是(
A.[0,1]
B.[1,7]
C.[7,12]
D.[0,1]和[7,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某賓館有相同標(biāo)準(zhǔn)的床位100張,根據(jù)經(jīng)驗(yàn),當(dāng)該賓館的床價(jià)(即每張床每天的租金)不超過10元時(shí),床位可以全部租出,當(dāng)床價(jià)高于10元時(shí),每提高1元,將有3張床位空閑.為了獲得較好的效益,該賓館要給床位定一個(gè)合適的價(jià)格,條件是:要方便結(jié)賬,床價(jià)應(yīng)為1元的整數(shù)倍;該賓館每日的費(fèi)用支出為575元,床位出租的收入必須高于支出,而且高出得越多越好.若用x表示床價(jià),用y表示該賓館一天出租床位的凈收入(即除去每日的費(fèi)用支出后的收入).

(1)把y表示成x的函數(shù),并求出其定義域;

(2)試確定該賓館將床位定價(jià)為多少時(shí),既符合上面的兩個(gè)條件,又能使凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進(jìn)行交稅,問三人各應(yīng)付多少稅?則下列說法錯(cuò)誤的是( )

A. 甲應(yīng)付 B. 乙應(yīng)付

C. 丙應(yīng)付 D. 三者中甲付的錢最多,丙付的錢最少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列兩個(gè)變量之間的關(guān)系哪個(gè)不是函數(shù)關(guān)系( 。
A.角度和它的正切值
B.人的右手一柞長和身高
C.正方體的棱長和表面積
D.真空中自由落體運(yùn)動物體的下落距離和下落時(shí)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生完成數(shù)學(xué)作業(yè)所需時(shí)間,某學(xué)校統(tǒng)計(jì)了高三年級學(xué)生每天完成數(shù)學(xué)作業(yè)的平均時(shí)間介于30分鐘到90分鐘之間,圖5是統(tǒng)計(jì)結(jié)果的頻率分布直方圖.

(1)數(shù)學(xué)教研組計(jì)劃對作業(yè)完成較慢的20%的學(xué)生進(jìn)行集中輔導(dǎo),試求每天完成數(shù)學(xué)作業(yè)的平均時(shí)間為多少分鐘以上的學(xué)生需要參加輔導(dǎo)?

(2)現(xiàn)從高三年級學(xué)生中任選4人,記4人中每天完成數(shù)學(xué)作業(yè)的平均時(shí)間不超過50分鐘的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣x3+ax2﹣4在x=2處取得極值,若m,n∈[0,1],則f'(n)+f(m)的最大值是(
A.﹣9
B.﹣1
C.1
D.﹣4

查看答案和解析>>

同步練習(xí)冊答案