【題目】已知橢圓,動圓(圓心為橢圓上異于左右頂點的任意一點),過原點作兩條射線與圓相切,分別交橢圓于兩點,且切線長最小值時,.

(Ⅰ)求橢圓的方程;

(Ⅱ)判斷的面積是否為定值,若是,則求出該值;不是,請說明理由。

【答案】(Ⅰ) (Ⅱ)見解析

【解析】

)由,所以當(dāng)OP最小時切線長OT最小. 又切線長取最小值時,.,所以,,此時,再建立OP關(guān)于的函數(shù),結(jié)合二次函數(shù)的最值情況可得.

)先計算切線OM(或ON)斜率不存在時的面積,再計算OM、ON斜率都存在時設(shè)MN方程,直線方程與橢圓方程聯(lián)立方程組,利用韋達定理求MN,求O到直線MN的距離,把的面積用k,m表示,再結(jié)合OM,ON與圓相切找出k,m的關(guān)系,化簡可得.

(Ⅰ)

,又 在橢圓上, ,

橢圓C的方程為:

(Ⅱ)解:(1)當(dāng)切線OM或ON斜率不存在即圓P與y軸相切時,易得,代入橢圓方程得:說明圓P同時也與x軸相切,此時M、N分別為長、短軸一個端點,則的面積為

(2)當(dāng)切線OM、ON斜率都存在時,設(shè)切線方程為:

得:

整理得:

由韋達定理得

設(shè),由于點P不與點A、B重合時,直線的斜率存在,

不妨設(shè)直線的方程為:

與橢圓方程聯(lián)立可得:

代入有:整理得:

而原點O到直線MN的距離為

所以的面積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,且過點

求橢圓的標(biāo)準(zhǔn)方程;

設(shè)直線l經(jīng)過點且與橢圓C交于不同的兩點MN試問:在x軸上是否存在點Q,使得直線QM與直線QN的斜率的和為定值?若存在,求出點Q的坐標(biāo)及定值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點分別為A,B,點P在橢圓O上運動,若PAB面積的最大值為,橢圓O的離心率為

(1)求橢圓O的標(biāo)準(zhǔn)方程;

(2)B點作圓E的兩條切線,分別與橢圓O交于兩點C,D(異于點B),當(dāng)r變化時,直線CD是否恒過某定點?若是,求出該定點坐標(biāo),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面,直線.給出下列命題:

① 若,則; ② 若,則;

③ 若,則; ④ 若,則.

其中是真命題的是_________.(填寫所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)若,求函數(shù)的單調(diào)區(qū)間;

(2)若,且方程內(nèi)有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點在平面直角坐標(biāo)系的原點處,極軸與軸的非負(fù)半軸重合,且長度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》(第二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. 288 B. 144 C. 720 D. 360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項a1=1,且a3+1a2+1a4+2的等比中項.

1)求數(shù)列{an}的通項公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上的三點 、 、 .

(1)求以 為焦點且過點 的橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點 、 、 關(guān)于直線 的對稱點分別為 、 、 ,求以 、 為焦點且過點 的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案