為了加快經(jīng)濟的發(fā)展,某省選擇兩城市作為龍頭帶動周邊城市的發(fā)展,決定在兩城市的周邊修建城際輕軌,假設(shè)為一個單位距離,兩城市相距個單位距離,設(shè)城際輕軌所在的曲線為,使輕軌上的點到兩城市的距離之和為個單位距離,

(1)建立如圖的直角坐標系,求城際輕軌所在曲線的方程;

(2)若要在曲線上建一個加油站與一個收費站,使三點在一條直線上,并且個單位距離,求之間的距離有多少個單位距離?

(3)在兩城市之間有一條與所在直線成的筆直公路,直線與曲線交于兩點,求四邊形的面積的最大值.

 

【答案】

(1)(2)8(3)

【解析】(1)根據(jù)題目條件選取適當?shù)淖鴺讼,本小題應(yīng)該以AB所在直線為x軸,AB的垂直平分線為y軸建立直角坐標系,這樣得到的軌跡方程是標準方程,有利于下一步的計算.

(2)由橢圓的定義可知|AM|+|AN|+|BM|+|BN|=20,|AM|+|AN|=12,所以|MN|=8.

(3)先求出四邊形的面積的表達式,設(shè)直線方程為y=x+t,然后與橢圓方程聯(lián)立,消x后得到關(guān)于y的一元二次方程,借助韋達定理,根據(jù),

求出面積關(guān)于t的函數(shù)表達式,利用函數(shù)的方法求最值即可.

解:(1)以AB為x軸,以AB中點為原點O建立直角坐標系,設(shè)曲線E上點

∵|PA|+|PB|=10>|AB|=8

∴動點軌跡為橢圓,且a=5,c=4,從面b=3.

∴曲線E的方程為                                                     4分

(2)由|AM|+|AN|+|BM|+|BN|=20,|AM|+|AN|=12,所以|MN|=8                         8分

(3)將代入,得

設(shè)

所以當t=0時,面積最大是,此時直線為l:y=x  13分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)為了加快經(jīng)濟的發(fā)展,某省選擇A、B兩城市作為龍頭帶動周邊城市的發(fā)展,決定在A、B兩城市的周邊修建城際輕軌,假設(shè)10km為一個單位距離,A、B兩城市相距8個單位距離,設(shè)城際輕軌所在的曲線為E,使輕軌E上的點到A、B兩市的距離之和為10個單位距離.
(1)建立直角坐標系,求城際輕軌所在曲線E的方程;
(2)若要在曲線E上建一個加油站M與一個收費站N,使M、N、B三點在一條直線上,并且AM+AN=12個單位距離,求M、N之間的距離有多少個單位距離?
(3)在A、B兩城市之間有一條與AB所在直線成45°的筆直公路l,直線l與曲線E交于P,Q兩點,求四邊形PAQB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三5月模擬考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)

為了加快經(jīng)濟的發(fā)展,某市選擇AB兩區(qū)作為龍頭帶動周邊地區(qū)的發(fā)展,決定在A、B兩區(qū)的周邊修建城際快速通道,假設(shè)AB兩區(qū)相距個單位距離,城際快速通道所在的曲線為E,使快速通道E上的點到兩區(qū)的距離之和為4個單位距離.

   (Ⅰ)以線段AB的中點O為原點建立如圖所示的直角坐標系,求城際快速通道所在曲線E的方程;

   (Ⅱ)若有一條斜率為的筆直公路l與曲線E交于P,Q兩點,同時在曲線E上建一個加油站M(橫坐標為負值)滿足,面積的最大值.                                

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了加快經(jīng)濟的發(fā)展,某省選擇A、B兩城市作為龍頭帶動周邊城市的發(fā)展,決定在A、B兩城市的周邊修建城際輕軌,假設(shè)10km為一個單位距離,A、B兩城市相距8個單位距離,設(shè)城際輕軌所在的曲線為E,使輕軌E上的點到A、B兩市的距離之和為10個單位距離.
(1)建立直角坐標系,求城際輕軌所在曲線E的方程;
(2)若要在曲線E上建一個加油站M與一個收費站N,使M、N、B三點在一條直線上,并且AM+AN=12個單位距離,求M、N之間的距離有多少個單位距離?
(3)在A、B兩城市之間有一條與AB所在直線成45°的筆直公路l,直線l與曲線E交于P,Q兩點,求四邊形PAQB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:藍山縣模擬 題型:解答題

為了加快經(jīng)濟的發(fā)展,某省選擇A、B兩城市作為龍頭帶動周邊城市的發(fā)展,決定在A、B兩城市的周邊修建城際輕軌,假設(shè)10km為一個單位距離,A、B兩城市相距8個單位距離,設(shè)城際輕軌所在的曲線為E,使輕軌E上的點到A、B兩市的距離之和為10個單位距離.
(1)建立直角坐標系,求城際輕軌所在曲線E的方程;
(2)若要在曲線E上建一個加油站M與一個收費站N,使M、N、B三點在一條直線上,并且AM+AN=12個單位距離,求M、N之間的距離有多少個單位距離?
(3)在A、B兩城市之間有一條與AB所在直線成45°的筆直公路l,直線l與曲線E交于P,Q兩點,求四邊形PAQB的面積的最大值.

查看答案和解析>>

同步練習冊答案