填空題(本大題有2小題,每題5分,共10分.請將答案填寫在答題卷中的橫線上):
(Ⅰ)函數(shù)的最小值為      .
(Ⅱ)若點(diǎn)在曲線上,點(diǎn)在曲線上,點(diǎn)在曲線上,則的最大值是      .
(I);(II)10..

試題分析:(I),利用其幾何意義可知表示點(diǎn)P(x,0),到點(diǎn)A(2,3),B(6,1)的距離之和,然后再求出點(diǎn)B關(guān)于x軸的對稱點(diǎn)C,則f(x)的最小值等于AC的距離.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240011521361611.png" style="vertical-align:middle;" />
.
點(diǎn)評:(1)把此函數(shù)通過配方轉(zhuǎn)化兩點(diǎn)間的距離公式可得是一個支點(diǎn)到兩個定點(diǎn)的距離之和,然后再利用對稱性化曲為直,求出最小值.
(2)根據(jù)點(diǎn)到圓上的點(diǎn)的最值,轉(zhuǎn)化為點(diǎn)到圓心的距離與半徑差為最小值,與半徑的最大值,然后再利用雙曲線的定義求解即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分) 如圖,是離心率為的橢圓,
()的左、右焦點(diǎn),直線將線段分成兩段,其長度之比為1 : 3.設(shè)上的兩個動點(diǎn),線段的中點(diǎn)在直線上,線段的中垂線與交于兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn),使以為直徑的圓經(jīng)過點(diǎn),若存在,求出點(diǎn)坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線過點(diǎn)
(I)求拋物線的方程;
(II)已知圓心在軸上的圓過點(diǎn),且圓在點(diǎn)的切線恰是拋物線在點(diǎn)的切線,求圓的方程;
(Ⅲ)如圖,點(diǎn)軸上一點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),過點(diǎn)作一條直線與拋物線交于兩點(diǎn),若,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個端點(diǎn)與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的
橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)過直角坐標(biāo)平面中的拋物線,直線過焦點(diǎn)且與拋物線相交于,兩點(diǎn).
⑴當(dāng)直線的傾斜角為時,用表示的長度;
⑵當(dāng)且三角形的面積為4時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線 的離心率為 ,且它的一條準(zhǔn)線與拋物
 的準(zhǔn)線重合,則此雙曲線的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與曲線相切于點(diǎn),則的值為 (   )
A.-3B.9
C.-15 D.-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個動點(diǎn),滿足EP⊥EQ,
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中心在原點(diǎn),焦點(diǎn)在y軸上,若長軸長為18,且兩個焦點(diǎn)恰好將長軸三等分,則橢圓的方程是 (  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案