如圖,已知直三棱柱ABC-A1B1C1中,AC=BC=2,M、N分別是棱CC1、AB的中點.求證:平面MCN⊥平面ABB1A1
分析:利用直三棱柱ABC-A1B1C1中,CC1⊥底面ABC,推出AB⊥CC1,證明AB⊥CN,推出AB⊥平面MCN,然后證明平面MCN⊥平面ABB1A1
解答:證明:在直三棱柱ABC-A1B1C1中,
CC1⊥底面ABC…(2分)
因為AB?平面ABC,
所以AB⊥CC1 …(5分)
又因為AC=BC=2,
N是AB中點,
所以AB⊥CN.…(7分)
由于CC1∩CN=C且CC1、CN?平面MCN,
所以AB⊥平面MCN  …(10分)
又因為AB?平面ABB1A1,
所以 平面MCN⊥平面ABB1A1.…(12分)
點評:本題考查通過直線與直線垂直,證明平面與平面垂直的證明方法,考查平面與平面垂直的判斷,考查邏輯推理能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點.
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,E是棱CC1上動點,F(xiàn)是AB中點,AC=BC=2,AA1=4.
(1)求證:CF⊥平面ABB1;
(2)當E是棱CC1中點時,求證:CF∥平面AEB1
(3)在棱CC1上是否存在點E,使得二面角A-EB1-B的大小是45°,若存在,求CE
的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分別是棱CC1、AB中點.
(1)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明;
(2)求四棱錐A-ECBB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點.
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點,試確定點E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•莒縣模擬)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CCl、AB中點.
(I)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)證明:直線CF∥平面AEBl

查看答案和解析>>

同步練習冊答案