已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其左、右焦點分別為F1(-c,0)、F2(c,0),且a,b,c成等比數(shù)列.
(1)求橢圓的離心率e的值.
(2)若橢圓C的上頂點、右頂點分別為A、B,求證:∠F1AB=90°.
分析:(1)由題設(shè)b2=ac及b2=a2-c2,由此能求出橢圓的離心率e的值.
(2)由題設(shè)A(0,b),B(a,0),又F1(-c,0),得
AF1
=(-c,-b)
,
AB
=(a,-b)
,于是
AF1
AB
=-ac+b2=0
,故∠F1AB=90°.
解答:(1)解:∵橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),
其左、右焦點分別為F1(-c,0)、F2(c,0),
且a,b,c成等比數(shù)列.
∴b2=ac及b2=a2-c2,
∴ac=a2-c2,
∴e=1-e2,
解得e=
5
-1
2
,e=
-1-
5
2
(舍),
∴e=
5
-1
2

(2)證明:∵橢圓C的上頂點、右頂點分別為A、B,
∴A(0,b),B(a,0),
∵F1(-c,0),
AF1
=(-c,-b)
,
AB
=(a,-b)
,
AF1
AB
=-ac+b2=0
,
故∠F1AB=90°.
點評:本題考查數(shù)列與解析幾何的綜合,具體涉及到橢圓離心率的求法和證明∠F1AB=90°.考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經(jīng)過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設(shè)過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案