已知拋物線C: 的焦點為F,ABQ的三個頂點都在拋物線C上,點M為AB的中點,.(1)若M,求拋物線C方程;(2)若的常數(shù),試求線段長的最大值.
(1),(2).
解析試題分析:(1)本小題中設(shè),又,而轉(zhuǎn)化為坐標(biāo)關(guān)系,從而可求出Q點坐標(biāo)(含P),又Q點在拋物線上,所以代入Q點坐標(biāo)可求得P;(2)本小題中可設(shè)直線AB的方程為及,,,聯(lián)立消y,得到關(guān)于x的一元二次方程(其中可得m的取值范圍),而,則根據(jù)韋達(dá)定理,可寫出關(guān)于m的函數(shù)關(guān)系,從而求出其最大值.
試題解析:(1)由題意,設(shè),因為M,。所以,代人得p=2或p=-1.由題意M在拋物線內(nèi)部,所以,故拋物線C: .
(2)設(shè)直線AB的方程為,點,,.由得,于是,,所以AB中點M的坐標(biāo)為,由,得,所以,由得,由,得,又因為=2=2=,記,易得=,所以=.
考點:拋物線的標(biāo)準(zhǔn)方程及焦點坐標(biāo)公式,向量的坐標(biāo)運算,直線與拋物線相交問題,設(shè)而不解思想,韋達(dá)定理,弦長公式,函數(shù)與方程思想,函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓G:經(jīng)過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內(nèi)部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的離心率為,其左焦點到點的距離為.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點,求證:直線過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知拋物線:,在此拋物線上一點到焦點的距離是3.
(1)求此拋物線的方程;
(2)拋物線的準(zhǔn)線與軸交于點,過點斜率為的直線與拋物線交于、兩點.是否存在這樣的,使得拋物線上總存在點滿足,若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)橢圓的左右焦點為,上頂點為,點關(guān)于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:()的左焦點為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當(dāng)四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com