關(guān)于平面向量abc,有下列三個(gè)命題:

①若a·b=a·c,則b=c;

②若a=1,k),b=-2,6),ab,則k=-3;

③非零向量ab滿足|a|=|b|=|ab|,則aa+b的夾角為30o

(參若a-1,k),b=-2,6),a

其中真命題的序號(hào)為( )

A)①② (B)①③ (C)②③ (D)①②③

 

【答案】

C

【解析】

試題分析:①當(dāng)時(shí),不一定相等,故①不正確;②若ab,則有,解得,故②正確;③令,,因?yàn)?/span>|a|=|b|=|ab|,所以為正三角形。設(shè)以為臨邊的平行四邊形為,因?yàn)?/span>為正三角形,所以為菱形且。由向量加法的平行四邊形法則可知。所以。故③正確。

考點(diǎn):平面向量的加減法、平行及數(shù)量積的計(jì)算。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
b
,
c
,有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c
、
②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的序號(hào)為
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
b
,
c
,有下列命題:
①(
a
b
c
-(
c
a
b
=0
②|
a
|-|
b
|<|
a
-
b
|;
③(
b
c
a
-(
c
a
b
不與
c
垂直;
④非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
-
b
的夾角為60°.
其中真命題的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
,
c
,有下列四個(gè)命題(  )
①若
a
b
,
.
a
0
則?λ∈R,使得
b
a

.
a
.
b
=0,則
a
=
o
b
=
0

③若
.
a
=(1,k),
b
=(-2,6),
.
a
b
則,k=-3
④若
a
b
=
a
c
 則
a
⊥(
b
-
c
)
,其中正確命題序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
,
b
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c
;
②若
a
=(1,k),
b
=(-2,6)
,
a
b
,則k=-3;
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為30°.
其中真命題的序號(hào)為
②③
②③
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于平面向量
a
b
,
c
.有下列三個(gè)命題:
①若
a
b
=
a
c
,則
b
=
c

②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的個(gè)數(shù)有(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案