(本題滿分14分)
設(shè)數(shù)列{}的前n項(xiàng)和為,且=1,,數(shù)列{}滿足,點(diǎn)P()在直線x―y+2=0上,.
(1)求數(shù)列{ },{}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{}的前n項(xiàng)和.

(1),
(2).

試題分析:解:(1)由可得,兩式相減得.
 ,所以.
是首項(xiàng)為,公比為的等比數(shù)列.所以.
由點(diǎn)在直線上,所以.
則數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列.則 
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004955449885.png" style="vertical-align:middle;" />,所以.
,
兩式相減得:
 
所以.
點(diǎn)評(píng):結(jié)合等差數(shù)列和等比數(shù)列的基本量求解通項(xiàng)公式,同時(shí)利用錯(cuò)位相減法求解和,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-aka2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項(xiàng)和為Sn.
(1)求S5,S7的值;
(2)求證:對(duì)任意n∈N*,Sn≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若,則=(     ).
A.1B.-1C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列是有窮等差數(shù)列,給出下面數(shù)表:
              ……             第1行
      ……           第2行
  …       …     …
…        …
…                       第n行
上表共有行,其中第1行的個(gè)數(shù)為,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為
(1)求證:數(shù)列成等比數(shù)列;
(2)若,求和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,,,則的值為(   )。
A.14B.15C.16D.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)樣本容量為的樣本數(shù)據(jù),它們組成一個(gè)公差不為的等差數(shù)列,若且前項(xiàng)和,則此樣本的平均數(shù)和中位數(shù)分別是 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足,為數(shù)列的前項(xiàng)和,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知等差數(shù)列{}的前n項(xiàng)和為Sn,且
(1)求通項(xiàng);
(2)求數(shù)列{}的前n項(xiàng)和的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
等差數(shù)列的前項(xiàng)和為,且.
(1)數(shù)列滿足:求數(shù)列的通項(xiàng)公式;
(2)設(shè)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案