已知三角形的三內角A、B、C所對邊的長分別為a、b、c,設向量
m
=(2a-c,b)
,
n
=(cosC,cosB)
,若
m
n

(1)求角B的大;
(2)若△ABC的面積為
3
,求AC邊的最小值,并指明此時三角形的形狀.
(1)
m
=(2a-c,b),
n
=(cosC,cosB)
,∵
m
n
,∴(2a-c)cosB=bcosC.
由正弦定理得:(2sinA-sinC)cosB=sinBcosC,
整理得:2sinAcosB=sinCcosB+sinBcosC,
即2sinAcosB=sin(B+C)=sinA,∵sinA>0,∴cosB=
1
2

∵0<B<π,∴B=
π
3
. …(6分)
(2)由已知得:S△ABC=
1
2
acsinB=
3
,B=
π
3
,∴ac=4.
由余弦定理,b2=a2+c2-2accosB=a2+c2-ac≥2ac-ac=ac,當且僅當“a=c”時取等號.
∴AC的最小值為2,此時三角形為等邊三角形.…(12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知三角形的三內角A、B、C所對邊的長分別為a、b、c,設向量
m
=(2a-c,b)
,
n
=(cosC,cosB)
,若
m
n

(1)求角B的大;
(2)若△ABC的面積為
3
,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三角形的三內角A、B、C所對邊的長分別為a、b、c,設向量數(shù)學公式,數(shù)學公式,若數(shù)學公式
(1)求角B的大;
(2)若△ABC的面積為數(shù)學公式,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形的三內角A、B、C所對邊的長分別為a、b、c,設向量,若

(1)求角B的大;

(2)若△ABC的面積為,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蚌埠市懷遠縣高三(上)摸底數(shù)學試卷(理科)(解析版) 題型:解答題

已知三角形的三內角A、B、C所對邊的長分別為a、b、c,設向量,若
(1)求角B的大。
(2)若△ABC的面積為,求AC邊的最小值,并指明此時三角形的形狀.

查看答案和解析>>

同步練習冊答案