已知三棱柱ABC-A?B?C?所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是
2
3
2
3
分析:已知三棱柱ABC-A?B?C?所有的棱長均為2,且側棱與底面垂直,所以S△ABC=
1
2
×2×2×sin60°
=
3
,由此能夠求出該三棱柱的體積.
解答:解:∵已知三棱柱ABC-A?B?C?所有的棱長均為2,
且側棱與底面垂直,
S△ABC=
1
2
×2×2×sin60°
=
3

V三棱柱ABC-A BC=2
3

故答案為:2
3
點評:本題考查三棱錐的體積,是基礎題.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東高二第二次月考文科數(shù)學試卷(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積

            

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱柱ABC-A?B?C?所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是______.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省云浮市高二(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知三棱柱ABC-A´B´C´所有的棱長均為2,且側棱與底面垂直,則該三棱柱的體積是   

查看答案和解析>>

同步練習冊答案