如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
 
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值..

(1)見解析(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖①,在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點.如圖②,將△ABE沿AE折起,使二面角BAEC成直二面角,連結(jié)BC、BD,F(xiàn)是CD的中點,P是棱BC的中點.求證:

圖①圖②
(1)AE⊥BD;
(2)平面PEF⊥平面AECD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,點M在AD1上移動,點N在BD上移動,D1M=DN=a(0<a<),連接MN.

(1)證明對任意a∈(0,),總有MN∥平面DCC1D1.
(2)當(dāng)a為何值時,MN的長最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱ABC­A1B1C1中,已知∠ACB=90°,MA1BAB1的交點,N為棱B1C1的中點,

(1)求證:MN∥平面AA1C1C;
(2)若ACAA1,求證:MN⊥平面A1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,,平面外一條線段AB滿足AB∥DE,AB,AB⊥AC,F(xiàn)是CD的中點.

(1)求證:AF∥平面BCE
(2)若AC=AD,證明:AF⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,斜四棱柱的底面是矩形,平面⊥平面,分別為的中點.

求證:
(1);(2)∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱臺ABCD-A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,ADA1B1,∠BAD=60°.
 
(1)證明:AA1BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為矩形,AD 平面ABE,AE=EB=BC=2,F為CE上的點.且BF 平面ACE.

(1)求證:平面ADE平面BCE;
(2)求四棱錐E-ABCD的體積;
(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,分別為的中點.

(1)求證:EF∥平面;
(2)若平面平面,且º,求證:平面平面

查看答案和解析>>

同步練習(xí)冊答案