已知函數(shù)f(x)=ex-ax-1(a>0,e為自然對數(shù)的底數(shù)).
(1)求函數(shù)f(x)的最小值;
(2)若f(x)≥0對任意的x∈R恒成立,求實(shí)數(shù)a的值.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系,即可求函數(shù)f(x)的最小值;
(2)要使f(x)≥0對任意的x∈R恒成立,則只需求出f(x)的最小值即可得到結(jié)論.
解答: 解:(1)∵f(x)=ex-ax-1(a>0),
∴f'(x)=ex-a,
由f'(x)=ex-a=0得x=lna,
由f'(x)>0得,x>lna,此時(shí)函數(shù)單調(diào)遞增,
由f'(x)<0得,x<lna,此時(shí)函數(shù)單調(diào)遞減,
即f(x)在x=lna處取得極小值且為最小值,
最小值為f(lna)=elna-alna-1=a-alna-1.
(2)若f(x)≥0對任意的x∈R恒成立,
等價(jià)為f(x)min≥0,
由(1)知,f(x)min=a-alna-1,
設(shè)g(a)=a-alna-1,
則g'(a)=1-lna-1=-lna,
由g'(a)=0得a=1,
由g'(x)>0得,0<x<1,此時(shí)函數(shù)單調(diào)遞增,
由g'(x)<0得,x>1,此時(shí)函數(shù)單調(diào)遞減,
∴g(a)在a=1處取得最大值,即g(1)=0,
因此g(a)≥0的解為a=1,
∴a=1.
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性和導(dǎo)數(shù)的之間關(guān)系,以及不等式恒成立問題,將不等式恒成立轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x|x2-x-6<0},Q={x|x-a≥0}
(1)若P⊆Q,求實(shí)數(shù)a的取值范圍;
(2)若P∩Q=∅,求實(shí)數(shù)a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0.9<a<1,試比較a,aa,aaa的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記者在街上隨機(jī)抽取10人調(diào)查其在一個(gè)月內(nèi)接到的打擾性短信息次數(shù),得統(tǒng)計(jì)的莖葉圖如下:
(Ⅰ)計(jì)算樣本的平均數(shù)及方差;
(Ⅱ)在這10個(gè)樣本中,現(xiàn)從低于20次的人中隨機(jī)抽取2人,求2人中至少有1人接到打擾性短信息低于10次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),若存在x0,使得f(x0)=x0,則稱x0是函數(shù)y=f(x)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù)f(x)=ax2+(b+1)x+b-2.
(1)當(dāng)a=2,b=1時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對于任意實(shí)數(shù)b,函數(shù)f(x)恒有兩具不同的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實(shí)數(shù)x,不等式(a-2)x2-2(a-2)x-4<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,現(xiàn)要在邊長為100m的正方形ABCD內(nèi)建一個(gè)交通“環(huán)島”.以正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為xm(x不小于9)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為
1
5
x2
m的圓形草地.為了保證道路暢通,島口寬不小于60m,繞島行駛的路寬均小于10m.
(1)求x的取值范圍;(運(yùn)算中
2
取1.4)
(2)若中間草地的造價(jià)為a元/m2,四個(gè)花壇的造價(jià)為
4
33
ax
元/m2,其余區(qū)域的造價(jià)為
12a
11
元/m2,當(dāng)x取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)長方體沿相鄰三個(gè)面的對角線截出一個(gè)棱錐,則棱錐的體積與剩下的幾何體的體積的比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
4
+
3y2
4
=1
上點(diǎn)P(1,1)處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊答案